POLY: add pb_mod2_to_modq()
This should make pb_inverse_poly_q() a bit more readable. TODO: make the algorithm more descriptive in general.
This commit is contained in:
parent
1968b8207f
commit
cabc81dfd9
65
src/poly.c
65
src/poly.c
@ -36,6 +36,9 @@
|
||||
* static declarations
|
||||
*/
|
||||
static unsigned int get_degree(pb_poly const * const poly);
|
||||
static void pb_mod2_to_modq(pb_poly * const a,
|
||||
pb_poly *Fq,
|
||||
ntru_context *ctx);
|
||||
|
||||
|
||||
/**
|
||||
@ -283,6 +286,43 @@ static unsigned int get_degree(pb_poly const * const poly)
|
||||
return count;
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the inverse polynomial modulo a power of 2,
|
||||
* which is q.
|
||||
*
|
||||
* @param a polynomial to invert (is allowed to be the same as param Fq)
|
||||
* @param Fq polynomial [out]
|
||||
* @param ctx NTRU context
|
||||
* @return true/false for success/failure
|
||||
*/
|
||||
static void pb_mod2_to_modq(pb_poly * const a,
|
||||
pb_poly *Fq,
|
||||
ntru_context *ctx)
|
||||
{
|
||||
int v = 2;
|
||||
|
||||
while (v < (int)(ctx->q)) {
|
||||
pb_poly *pb_tmp,
|
||||
*pb_tmp2;
|
||||
mp_int tmp_v;
|
||||
pb_tmp = build_polynom(NULL, ctx->N, ctx);
|
||||
v = v * 2;
|
||||
init_integer(&tmp_v);
|
||||
MP_SET_INT(&tmp_v, v);
|
||||
pb_tmp2 = build_polynom(NULL, ctx->N, ctx);
|
||||
MP_SET_INT(&(pb_tmp2->terms[0]), 2);
|
||||
|
||||
/* mod after sub or before? */
|
||||
pb_starmultiply(a, Fq, pb_tmp, ctx, v);
|
||||
PB_SUB(pb_tmp2, pb_tmp, pb_tmp);
|
||||
PB_MOD(pb_tmp, &tmp_v, pb_tmp, ctx->N);
|
||||
pb_starmultiply(Fq, pb_tmp, Fq, ctx, v);
|
||||
|
||||
mp_clear(&tmp_v);
|
||||
delete_polynom_multi(pb_tmp, pb_tmp2, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Invert the polynomial a modulo q.
|
||||
*
|
||||
@ -296,8 +336,7 @@ bool pb_inverse_poly_q(pb_poly * const a,
|
||||
ntru_context *ctx)
|
||||
{
|
||||
int k = 0,
|
||||
j = 0,
|
||||
v = 2;
|
||||
j = 0;
|
||||
pb_poly *a_tmp, *b, *c, *f, *g;
|
||||
|
||||
b = build_polynom(NULL, ctx->N + 1, ctx);
|
||||
@ -347,27 +386,7 @@ OUT_OF_LOOP:
|
||||
MP_COPY(&(b->terms[i]), &(Fq->terms[j]));
|
||||
}
|
||||
|
||||
while (v < (int)(ctx->q)) {
|
||||
pb_poly *pb_tmp,
|
||||
*pb_tmp2;
|
||||
mp_int tmp_v;
|
||||
pb_tmp = build_polynom(NULL, ctx->N, ctx);
|
||||
v = v * 2;
|
||||
init_integer(&tmp_v);
|
||||
mp_set_int(&tmp_v, v);
|
||||
pb_tmp2 = build_polynom(NULL, ctx->N, ctx);
|
||||
mp_set_int(&(pb_tmp2->terms[0]), 2);
|
||||
|
||||
/* hope this does not blow up in our face */
|
||||
pb_starmultiply(a_tmp, Fq, pb_tmp, ctx, v);
|
||||
PB_SUB(pb_tmp2, pb_tmp, pb_tmp);
|
||||
PB_MOD(pb_tmp, &tmp_v, pb_tmp, ctx->N);
|
||||
pb_starmultiply(Fq, pb_tmp, Fq, ctx, v);
|
||||
|
||||
mp_clear(&tmp_v);
|
||||
delete_polynom(pb_tmp);
|
||||
delete_polynom(pb_tmp2);
|
||||
}
|
||||
pb_mod2_to_modq(a_tmp, Fq, ctx);
|
||||
|
||||
for (int i = ctx->N - 1; i >= 0; i--)
|
||||
if (mp_cmp_d(&(Fq->terms[i]), 0) == MP_LT) {
|
||||
|
Loading…
Reference in New Issue
Block a user