POLY: add pb_mod2_to_modq()
This should make pb_inverse_poly_q() a bit more readable. TODO: make the algorithm more descriptive in general.
This commit is contained in:
parent
6c0f94435e
commit
abd2727215
65
src/poly.c
65
src/poly.c
@ -36,6 +36,9 @@
|
|||||||
* static declarations
|
* static declarations
|
||||||
*/
|
*/
|
||||||
static unsigned int get_degree(pb_poly const * const poly);
|
static unsigned int get_degree(pb_poly const * const poly);
|
||||||
|
static void pb_mod2_to_modq(pb_poly * const a,
|
||||||
|
pb_poly *Fq,
|
||||||
|
ntru_context *ctx);
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -283,6 +286,43 @@ static unsigned int get_degree(pb_poly const * const poly)
|
|||||||
return count;
|
return count;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find the inverse polynomial modulo a power of 2,
|
||||||
|
* which is q.
|
||||||
|
*
|
||||||
|
* @param a polynomial to invert (is allowed to be the same as param Fq)
|
||||||
|
* @param Fq polynomial [out]
|
||||||
|
* @param ctx NTRU context
|
||||||
|
* @return true/false for success/failure
|
||||||
|
*/
|
||||||
|
static void pb_mod2_to_modq(pb_poly * const a,
|
||||||
|
pb_poly *Fq,
|
||||||
|
ntru_context *ctx)
|
||||||
|
{
|
||||||
|
int v = 2;
|
||||||
|
|
||||||
|
while (v < (int)(ctx->q)) {
|
||||||
|
pb_poly *pb_tmp,
|
||||||
|
*pb_tmp2;
|
||||||
|
mp_int tmp_v;
|
||||||
|
pb_tmp = build_polynom(NULL, ctx->N, ctx);
|
||||||
|
v = v * 2;
|
||||||
|
init_integer(&tmp_v);
|
||||||
|
MP_SET_INT(&tmp_v, v);
|
||||||
|
pb_tmp2 = build_polynom(NULL, ctx->N, ctx);
|
||||||
|
MP_SET_INT(&(pb_tmp2->terms[0]), 2);
|
||||||
|
|
||||||
|
/* mod after sub or before? */
|
||||||
|
pb_starmultiply(a, Fq, pb_tmp, ctx, v);
|
||||||
|
PB_SUB(pb_tmp2, pb_tmp, pb_tmp);
|
||||||
|
PB_MOD(pb_tmp, &tmp_v, pb_tmp, ctx->N);
|
||||||
|
pb_starmultiply(Fq, pb_tmp, Fq, ctx, v);
|
||||||
|
|
||||||
|
mp_clear(&tmp_v);
|
||||||
|
delete_polynom_multi(pb_tmp, pb_tmp2, NULL);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Invert the polynomial a modulo q.
|
* Invert the polynomial a modulo q.
|
||||||
*
|
*
|
||||||
@ -296,8 +336,7 @@ bool pb_inverse_poly_q(pb_poly * const a,
|
|||||||
ntru_context *ctx)
|
ntru_context *ctx)
|
||||||
{
|
{
|
||||||
int k = 0,
|
int k = 0,
|
||||||
j = 0,
|
j = 0;
|
||||||
v = 2;
|
|
||||||
pb_poly *a_tmp, *b, *c, *f, *g;
|
pb_poly *a_tmp, *b, *c, *f, *g;
|
||||||
|
|
||||||
b = build_polynom(NULL, ctx->N + 1, ctx);
|
b = build_polynom(NULL, ctx->N + 1, ctx);
|
||||||
@ -347,27 +386,7 @@ OUT_OF_LOOP:
|
|||||||
MP_COPY(&(b->terms[i]), &(Fq->terms[j]));
|
MP_COPY(&(b->terms[i]), &(Fq->terms[j]));
|
||||||
}
|
}
|
||||||
|
|
||||||
while (v < (int)(ctx->q)) {
|
pb_mod2_to_modq(a_tmp, Fq, ctx);
|
||||||
pb_poly *pb_tmp,
|
|
||||||
*pb_tmp2;
|
|
||||||
mp_int tmp_v;
|
|
||||||
pb_tmp = build_polynom(NULL, ctx->N, ctx);
|
|
||||||
v = v * 2;
|
|
||||||
init_integer(&tmp_v);
|
|
||||||
mp_set_int(&tmp_v, v);
|
|
||||||
pb_tmp2 = build_polynom(NULL, ctx->N, ctx);
|
|
||||||
mp_set_int(&(pb_tmp2->terms[0]), 2);
|
|
||||||
|
|
||||||
/* hope this does not blow up in our face */
|
|
||||||
pb_starmultiply(a_tmp, Fq, pb_tmp, ctx, v);
|
|
||||||
PB_SUB(pb_tmp2, pb_tmp, pb_tmp);
|
|
||||||
PB_MOD(pb_tmp, &tmp_v, pb_tmp, ctx->N);
|
|
||||||
pb_starmultiply(Fq, pb_tmp, Fq, ctx, v);
|
|
||||||
|
|
||||||
mp_clear(&tmp_v);
|
|
||||||
delete_polynom(pb_tmp);
|
|
||||||
delete_polynom(pb_tmp2);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = ctx->N - 1; i >= 0; i--)
|
for (int i = ctx->N - 1; i >= 0; i--)
|
||||||
if (mp_cmp_d(&(Fq->terms[i]), 0) == MP_LT) {
|
if (mp_cmp_d(&(Fq->terms[i]), 0) == MP_LT) {
|
||||||
|
Loading…
Reference in New Issue
Block a user