POLY: first try of inverting polynomials
This commit is contained in:
parent
3184e9093f
commit
85ba70a9c5
134
src/poly.c
134
src/poly.c
@ -21,11 +21,13 @@
|
||||
|
||||
#include "context.h"
|
||||
#include "err.h"
|
||||
#include "poly.h"
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <tompoly.h>
|
||||
#include <tommath.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
/**
|
||||
* Initialize a mp_int and check if this was successful, the
|
||||
@ -201,6 +203,138 @@ void pb_starmultiply(pb_poly *a,
|
||||
}
|
||||
|
||||
/**
|
||||
* c = a XOR b
|
||||
*
|
||||
* @param a polynom (is allowed to be the same as param c)
|
||||
* @param b polynom
|
||||
* @param c polynom [out]
|
||||
* @param len max size of the polynoms, make sure all are
|
||||
* properly allocated
|
||||
*/
|
||||
void pb_xor(pb_poly *a,
|
||||
pb_poly *b,
|
||||
pb_poly *c,
|
||||
const size_t len)
|
||||
{
|
||||
for (unsigned int i = 0; i < len; i++)
|
||||
mp_xor(&(a->terms[i]), &(b->terms[i]), &(c->terms[i]));
|
||||
}
|
||||
|
||||
/**
|
||||
* Invert the polynomial a modulo q.
|
||||
*
|
||||
* @param a polynomial to invert (is allowed to be the same as param Fq)
|
||||
* @param Fq polynomial [out]
|
||||
* @param ctx NTRU context
|
||||
* @return true/false for success/failure
|
||||
*/
|
||||
bool pb_inverse_poly_q(pb_poly * const a,
|
||||
pb_poly *Fq,
|
||||
ntru_context *ctx)
|
||||
{
|
||||
int k = 0,
|
||||
j = 0,
|
||||
v = 2;
|
||||
int zero_poly_val = 1;
|
||||
pb_poly *a_tmp, *b, *c, *f, *g, *degree_zero_poly;
|
||||
|
||||
degree_zero_poly = build_polynom(&zero_poly_val, 1, ctx);
|
||||
b = build_polynom(NULL, ctx->N, ctx);
|
||||
mp_set(&(b->terms[0]), 1);
|
||||
c = build_polynom(NULL, ctx->N, ctx);
|
||||
f = build_polynom(NULL, ctx->N, ctx);
|
||||
pb_copy(a, f);
|
||||
a_tmp = build_polynom(NULL, ctx->N, ctx);
|
||||
pb_copy(a, a_tmp);
|
||||
g = build_polynom(NULL, ctx->N, ctx);
|
||||
mp_set(&(g->terms[0]), 1);
|
||||
g->terms[0].sign = 1;
|
||||
mp_set(&(g->terms[ctx->N]), 1);
|
||||
|
||||
while (1) {
|
||||
while (mp_cmp_d(&(f->terms[0]), 0) == MP_EQ) {
|
||||
for (unsigned int i = 1; i <= ctx->N; i++) {
|
||||
mp_copy(&(f->terms[i]), &(f->terms[i - 1]));
|
||||
mp_copy(&(c->terms[ctx->N - i]), &(c->terms[ctx->N + 1 - i]));
|
||||
}
|
||||
mp_set(&(f->terms[ctx->N]), 0);
|
||||
mp_set(&(c->terms[0]), 0);
|
||||
k++;
|
||||
}
|
||||
|
||||
/* hope this does not blow up in our face */
|
||||
pb_clamp(degree_zero_poly);
|
||||
pb_clamp(f);
|
||||
if (pb_cmp(f, degree_zero_poly) == PB_DEG_EQ)
|
||||
goto OUT_OF_LOOP;
|
||||
|
||||
pb_clamp(g);
|
||||
if (pb_cmp(f, g) == PB_DEG_LT) {
|
||||
pb_exch(f, g);
|
||||
pb_exch(b, c);
|
||||
}
|
||||
|
||||
/* draw_polynom(f); */
|
||||
/* draw_polynom(b); */
|
||||
pb_xor(f, g, f, ctx->N);
|
||||
pb_xor(b, c, b, ctx->N);
|
||||
/* draw_polynom(f); */
|
||||
/* draw_polynom(b); */
|
||||
}
|
||||
|
||||
OUT_OF_LOOP:
|
||||
k = k % ctx->N;
|
||||
|
||||
for (int i = ctx->N - 1; i >= 0; i--) {
|
||||
j = i - k;
|
||||
if (j < 0)
|
||||
j = j + ctx->N;
|
||||
mp_copy(&(b->terms[i]), &(Fq->terms[j]));
|
||||
}
|
||||
draw_polynom(Fq);
|
||||
|
||||
while (v < (int)(ctx->q)) {
|
||||
pb_poly *pb_tmp,
|
||||
*pb_tmp_v,
|
||||
*pb_tmp2;
|
||||
pb_tmp = build_polynom(NULL, ctx->N, ctx);
|
||||
v = v * 2;
|
||||
pb_tmp_v = build_polynom(NULL, ctx->N, ctx);
|
||||
mp_set_int(&(pb_tmp_v->terms[0]), v);
|
||||
pb_tmp2 = build_polynom(NULL, ctx->N, ctx);
|
||||
mp_set_int(&(pb_tmp2->terms[0]), 2);
|
||||
|
||||
/* hope this does not blow up in our face */
|
||||
pb_starmultiply(a_tmp, Fq, pb_tmp, ctx, v);
|
||||
pb_sub(pb_tmp2, pb_tmp, pb_tmp);
|
||||
pb_mod(pb_tmp, pb_tmp_v, pb_tmp);
|
||||
pb_starmultiply(Fq, pb_tmp, Fq, ctx, v);
|
||||
|
||||
delete_polynom(pb_tmp);
|
||||
delete_polynom(pb_tmp_v);
|
||||
delete_polynom(pb_tmp2);
|
||||
}
|
||||
|
||||
for (int i = ctx->N - 1; i >= 0; i--)
|
||||
if (mp_cmp_d(&(Fq->terms[i]), 0) == MP_LT) {
|
||||
mp_int mp_tmp;
|
||||
init_integer(&mp_tmp);
|
||||
mp_set_int(&mp_tmp, ctx->q);
|
||||
mp_add(&(Fq->terms[i]), &mp_tmp, &(Fq->terms[i]));
|
||||
mp_clear(&mp_tmp);
|
||||
}
|
||||
|
||||
delete_polynom(a_tmp);
|
||||
delete_polynom(b);
|
||||
delete_polynom(c);
|
||||
delete_polynom(f);
|
||||
delete_polynom(g);
|
||||
delete_polynom(degree_zero_poly);
|
||||
|
||||
/* TODO: check if the f * Fq = 1 (mod p) condition holds true */
|
||||
|
||||
return true;
|
||||
}
|
||||
* Print the polynomial in a human readable format to stdout.
|
||||
*
|
||||
* @param poly to draw
|
||||
|
10
src/poly.h
10
src/poly.h
@ -27,6 +27,7 @@
|
||||
|
||||
#include <tompoly.h>
|
||||
#include <tommath.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
|
||||
void init_integer(mp_int *new_int);
|
||||
@ -47,6 +48,15 @@ void pb_starmultiply(pb_poly *a,
|
||||
ntru_context *ctx,
|
||||
unsigned int modulus);
|
||||
|
||||
void pb_xor(pb_poly *a,
|
||||
pb_poly *b,
|
||||
pb_poly *c,
|
||||
const size_t len);
|
||||
|
||||
bool pb_inverse_poly_q(pb_poly *a,
|
||||
pb_poly *Fq,
|
||||
ntru_context *ctx);
|
||||
|
||||
void draw_polynom(pb_poly * const poly);
|
||||
|
||||
#endif /* NTRU_POLY_H */
|
||||
|
Loading…
Reference in New Issue
Block a user