ASCII->POLY: split up to poly_ascii.c

This commit is contained in:
hasufell 2014-06-02 21:17:15 +02:00
parent b82126d180
commit 2503fdcfa4
No known key found for this signature in database
GPG Key ID: 220CD1C5BDEED020
8 changed files with 439 additions and 348 deletions

View File

@ -9,7 +9,8 @@ PQC_SOURCES = poly.c \
keypair.c \
ascii_poly.c \
file.c \
ntru_string.c
ntru_string.c \
poly_ascii.c
PQC_OBJS = $(patsubst %.c, %.o, $(PQC_SOURCES))
@ -22,7 +23,8 @@ PQC_HEADERS = err.h \
ascii_poly.h \
common.h \
file.h \
ntru_string.h
ntru_string.h \
poly_ascii.h
# libs
LIBS += -L. -lgmp -lmpfr -lflint $(shell $(PKG_CONFIG) --libs glib-2.0) -lm

View File

@ -21,9 +21,9 @@
/**
* @file ascii_poly.c
* This file allows to convert between ascii strings
* and polynomials.
* @brief asci->poly and poly->ascii
* This file allows to convert ascii strings, including
* base64 encoded ones, to polynomials.
* @brief ascii to polynomials
*/
#include "ascii_poly.h"
@ -55,25 +55,6 @@
static char *
get_int_to_bin_str(uint8_t value);
/**
* Converts a binary representation of multiple concatenated
* integers to the corresponding array of ascii chars, which
* is NULL-terminated.
*
* It reads in 8bit chunks, as in:
*
* 10110101|00111100|01011001 => 90|60|89 => "Z<Y"
*
* Chunks that are 00000000 are stripped from the result.
*
* @param binary_rep the binary representation of multiple
* integers concatenated
* @return string of corresponding ascii-chars,
* newly allocated
*/
static string *
get_bin_arr_to_ascii(const char *binary_rep);
/*------------------------------------------------------------------------*/
@ -96,51 +77,6 @@ get_int_to_bin_str(uint8_t value)
/*------------------------------------------------------------------------*/
static string *
get_bin_arr_to_ascii(const char *binary_rep)
{
size_t int_arr_size = 0;
uint8_t *int_arr = NULL;
uint32_t i = 0;
char *int_string = NULL;
string *result = ntru_malloc(sizeof(*result));
if (!binary_rep || !*binary_rep)
return NULL;
int_arr_size = strlen(binary_rep) / ASCII_BITS + 1;
int_arr = ntru_malloc(sizeof(*int_arr) * int_arr_size);
while (*binary_rep) {
int_arr[i] = 0;
/* convert one binary integer to real integer */
for (uint32_t j = 0; j < ASCII_BITS && *binary_rep; j++) {
if (*binary_rep == '1')
int_arr[i] = int_arr[i] * 2 + 1;
else if (*binary_rep == '0')
int_arr[i] *= 2;
binary_rep++;
}
i++; /* amount of real integers */
}
int_string = ntru_malloc(CHAR_SIZE * (i + 1));
for (uint32_t j = 0; j < i; j++)
int_string[j] = (char) int_arr[j];
result->ptr = int_string;
result->len = i;
free(int_arr);
return result;
}
/*------------------------------------------------------------------------*/
fmpz_poly_t *
ascii_bin_to_bin_poly(const char *to_poly, const ntru_context *ctx)
{
@ -205,108 +141,6 @@ ascii_to_bin_poly_arr(const string *to_poly, const ntru_context *ctx)
/*------------------------------------------------------------------------*/
string *
bin_poly_to_ascii(const fmpz_poly_t poly,
const ntru_context *ctx)
{
string *result_string = ntru_malloc(sizeof(*result_string));
char *binary_rep = ntru_malloc(CHAR_SIZE * (ctx->N));
uint32_t i = 0;
for (uint32_t j = 0; j < ctx->N; j++) {
fmpz *coeff = fmpz_poly_get_coeff_ptr(poly, j);
if (coeff) {
if (!fmpz_cmp_si(coeff, 1))
binary_rep[i] = '1';
else if (!fmpz_cmp_si(coeff, -1))
binary_rep[i] = '0';
} else {
break;
}
i++;
}
result_string->ptr = binary_rep;
result_string->len = i;
return result_string;
}
/*------------------------------------------------------------------------*/
string *
bin_poly_arr_to_ascii(fmpz_poly_t **bin_poly_arr,
const ntru_context *ctx)
{
fmpz_poly_t *ascii_poly;
char *binary_rep = NULL;
size_t string_len = 0;
string *ascii_string = NULL;
size_t old_length = 0,
new_length;
/*
* parse the polynomial coefficients into a string
*/
binary_rep = ntru_calloc(1, CHAR_SIZE * (ctx->N + 1));
while ((ascii_poly = (fmpz_poly_t *)*bin_poly_arr++)) {
string *single_poly_string = NULL;
new_length = CHAR_SIZE * (ctx->N);
REALLOC(binary_rep,
old_length +
new_length +
1); /* trailing null byte */
old_length += new_length;
single_poly_string = bin_poly_to_ascii(*ascii_poly, ctx);
memcpy(binary_rep + string_len,
single_poly_string->ptr,
single_poly_string->len);
string_len += single_poly_string->len;
string_delete(single_poly_string);
}
binary_rep[string_len] = '\0';
ascii_string = get_bin_arr_to_ascii(binary_rep);
free(binary_rep);
return ascii_string;
}
/*------------------------------------------------------------------------*/
string *
poly_to_ascii(const fmpz_poly_t poly,
const ntru_context *ctx)
{
string *result_string = ntru_malloc(sizeof(*result_string));
char *string_rep = ntru_malloc(CHAR_SIZE * (ctx->N));
for (uint32_t j = 0; j < ctx->N; j++) {
uint8_t coeff = fmpz_poly_get_coeff_ui(poly, j);
if (coeff == ctx->q)
string_rep[j] = '\0';
else
string_rep[j] = (char)coeff;
}
result_string->ptr = string_rep;
result_string->len = ctx->N;
return result_string;
}
/*------------------------------------------------------------------------*/
fmpz_poly_t **
base64_to_poly_arr(const string *to_poly, const ntru_context *ctx)
{
@ -372,84 +206,3 @@ base64_to_poly_arr(const string *to_poly, const ntru_context *ctx)
return poly_array;
}
/*------------------------------------------------------------------------*/
string *
poly_to_base64(const fmpz_poly_t poly,
const ntru_context *ctx)
{
string *result_string = ntru_malloc(sizeof(*result_string));
string *string_rep = NULL;
gchar *base64_string = NULL,
*tmp = NULL;
string_rep = poly_to_ascii(poly, ctx);
tmp = g_base64_encode((const guchar *)string_rep->ptr,
string_rep->len);
base64_string = g_base64_encode((const guchar *)tmp,
strlen(tmp));
result_string->ptr = base64_string;
result_string->len = strlen(base64_string);
string_delete(string_rep);
free(tmp);
return result_string;
}
/*------------------------------------------------------------------------*/
string *
poly_arr_to_base64(fmpz_poly_t **poly_array,
const ntru_context *ctx)
{
fmpz_poly_t *ascii_poly;
char *string_rep = NULL;
size_t string_len = 0;
string *result_string = ntru_malloc(sizeof(*result_string));
size_t old_length = 0,
new_length;
gchar *base64_string = NULL,
*tmp = NULL;
/*
* parse the polynomial coefficients into a string
*/
string_rep = ntru_calloc(1, CHAR_SIZE * (ctx->N + 1));
while ((ascii_poly = *poly_array++)) {
string *poly_str;
poly_str = poly_to_ascii(*ascii_poly, ctx);
new_length = CHAR_SIZE * poly_str->len;
REALLOC(string_rep,
old_length +
new_length);
old_length += new_length;
memcpy(string_rep + string_len,
poly_str->ptr,
poly_str->len);
string_len += poly_str->len;
string_delete(poly_str);
}
tmp = g_base64_encode((const guchar *)string_rep, string_len);
base64_string = g_base64_encode((const guchar *)tmp,
strlen(tmp));
result_string->ptr = base64_string;
result_string->len = strlen(base64_string);
free(string_rep);
free(tmp);
return result_string;
}
/*------------------------------------------------------------------------*/

View File

@ -75,69 +75,6 @@ ascii_bin_to_bin_poly(const char *to_poly, const ntru_context *ctx);
fmpz_poly_t **
ascii_to_bin_poly_arr(const string *to_poly, const ntru_context *ctx);
/**
* Convert a single binary polynomial back to a real string.
* The polynomial coefficients represent a binary format of the
* ascii string with the following mapping:
*
* 1 => 1
*
* -1 => 0
*
* 2 => 0
*
* The 2's are only used for filling up the rest of the polynomial,
* so they will just end up as '\0's at the end of the string and will
* not confuse the result.
*
* @param poly the binary polynomial to convert
* @param ctx the NTRUEncrypt context
* @return the real string, newly allocated
*/
string *
bin_poly_to_ascii(const fmpz_poly_t poly,
const ntru_context *ctx);
/**
* Convert an array of binary polynomials back to a real string.
* The polynomial coefficients represent a binary format of the
* ascii string with the following mapping:
*
* 1 => 1
*
* -1 => 0
*
* 2 => 0
*
* The 2's are only used for filling up the last polynomial, so they will
* just end up as '\0's at the end of the string and will not confuse
* the result.
*
* @param bin_poly_arr the array of polynomials
* @param ctx the NTRUEncrypt context
* @return the real string, newly allocated
*/
string *
bin_poly_arr_to_ascii(fmpz_poly_t **bin_poly_arr,
const ntru_context *ctx);
/**
* Convert a single polynom back to a real string which is
* ascii encoded (full 256 C char spectrum).
* The polynomial coefficients are expected to be in the range
* [0, q-1] and will be casted back to chars without any mapping.
*
* Trailing q coefficients are only used for filling up the rest of
* a polynomial with '\0', so they will not confuse the result.
*
* @param poly the polynomial to convert
* @param ctx the NTRUEncrypt context
* @return the real string, newly allocated
*/
string *
poly_to_ascii(const fmpz_poly_t poly,
const ntru_context *ctx);
/**
* Convert an base64 encoded string to an array of polyomials with
* coefficients which are expected to be in the range [0, q-1].
@ -156,38 +93,5 @@ poly_to_ascii(const fmpz_poly_t poly,
fmpz_poly_t **
base64_to_poly_arr(const string *to_poly, const ntru_context *ctx);
/**
* Convert a single polynom back to a real string which is
* base64 encoded.
* The polynomial coefficients are expected to be in the range
* [0, q-1] and will be casted back to chars without any mapping.
*
* Trailing q coefficients are only used for filling up the rest of
* a polynomial with '\0', so they will not confuse the result.
*
* @param poly the polynomial to convert
* @param ctx the NTRUEncrypt context
* @return the real string, newly allocated
*/
string *
poly_to_base64(const fmpz_poly_t poly,
const ntru_context *ctx);
/**
* Convert an array of polynomials back to a real string which
* is base64 encoded.
* The polynomial coefficients are expected to be in the range
* [0, q-1] and will be casted back to chars without any mapping.
*
* Trailing q coefficients are only used for filling up the rest of
* a polynomial with '\0', so they will not confuse the result.
*
* @param poly_arr the array of polynomials
* @param ctx the NTRUEncrypt context
* @return the real string, newly allocated
*/
string *
poly_arr_to_base64(fmpz_poly_t **poly_arr, const ntru_context *ctx);
#endif /* NTRU_ASCII_POLY_H_ */

View File

@ -29,6 +29,7 @@
#include "ascii_poly.h"
#include "decrypt.h"
#include "ntru_string.h"
#include "poly_ascii.h"
#include <stdbool.h>
#include <string.h>

View File

@ -30,6 +30,7 @@
#include "encrypt.h"
#include "mem.h"
#include "ntru_string.h"
#include "poly_ascii.h"
#include <string.h>

View File

@ -32,6 +32,7 @@
#include "keypair.h"
#include "ntru_string.h"
#include "poly.h"
#include "poly_ascii.h"
#include <fmpz_poly.h>
#include <fmpz.h>

292
src/poly_ascii.c Normal file
View File

@ -0,0 +1,292 @@
/*
* Copyright (C) 2014 FH Bielefeld
*
* This file is part of a FH Bielefeld project.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
/**
* @file poly_ascii.c
* This file allows to convert polynomials to
* ascii strings, including base64 encoded.
* @brief polynomials to acii
*/
#include "poly_ascii.h"
#include "common.h"
#include "context.h"
#include "mem.h"
#include "ntru_string.h"
#include "poly.h"
#include <glib.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <fmpz_poly.h>
#include <fmpz.h>
/**
* Converts a binary representation of multiple concatenated
* integers to the corresponding array of ascii chars, which
* is NULL-terminated.
*
* It reads in 8bit chunks, as in:
*
* 10110101|00111100|01011001 => 90|60|89 => "Z<Y"
*
* Chunks that are 00000000 are stripped from the result.
*
* @param binary_rep the binary representation of multiple
* integers concatenated
* @return string of corresponding ascii-chars,
* newly allocated
*/
static string *
get_bin_arr_to_ascii(const char *binary_rep);
/*------------------------------------------------------------------------*/
static string *
get_bin_arr_to_ascii(const char *binary_rep)
{
size_t int_arr_size = 0;
uint8_t *int_arr = NULL;
uint32_t i = 0;
char *int_string = NULL;
string *result = ntru_malloc(sizeof(*result));
if (!binary_rep || !*binary_rep)
return NULL;
int_arr_size = strlen(binary_rep) / ASCII_BITS + 1;
int_arr = ntru_malloc(sizeof(*int_arr) * int_arr_size);
while (*binary_rep) {
int_arr[i] = 0;
/* convert one binary integer to real integer */
for (uint32_t j = 0; j < ASCII_BITS && *binary_rep; j++) {
if (*binary_rep == '1')
int_arr[i] = int_arr[i] * 2 + 1;
else if (*binary_rep == '0')
int_arr[i] *= 2;
binary_rep++;
}
i++; /* amount of real integers */
}
int_string = ntru_malloc(CHAR_SIZE * (i + 1));
for (uint32_t j = 0; j < i; j++)
int_string[j] = (char) int_arr[j];
result->ptr = int_string;
result->len = i;
free(int_arr);
return result;
}
/*------------------------------------------------------------------------*/
string *
bin_poly_to_ascii(const fmpz_poly_t poly,
const ntru_context *ctx)
{
string *result_string = ntru_malloc(sizeof(*result_string));
char *binary_rep = ntru_malloc(CHAR_SIZE * (ctx->N));
uint32_t i = 0;
for (uint32_t j = 0; j < ctx->N; j++) {
fmpz *coeff = fmpz_poly_get_coeff_ptr(poly, j);
if (coeff) {
if (!fmpz_cmp_si(coeff, 1))
binary_rep[i] = '1';
else if (!fmpz_cmp_si(coeff, -1))
binary_rep[i] = '0';
} else {
break;
}
i++;
}
result_string->ptr = binary_rep;
result_string->len = i;
return result_string;
}
/*------------------------------------------------------------------------*/
string *
bin_poly_arr_to_ascii(fmpz_poly_t **bin_poly_arr,
const ntru_context *ctx)
{
fmpz_poly_t *ascii_poly;
char *binary_rep = NULL;
size_t string_len = 0;
string *ascii_string = NULL;
size_t old_length = 0,
new_length;
/*
* parse the polynomial coefficients into a string
*/
binary_rep = ntru_calloc(1, CHAR_SIZE * (ctx->N + 1));
while ((ascii_poly = (fmpz_poly_t *)*bin_poly_arr++)) {
string *single_poly_string = NULL;
new_length = CHAR_SIZE * (ctx->N);
REALLOC(binary_rep,
old_length +
new_length +
1); /* trailing null byte */
old_length += new_length;
single_poly_string = bin_poly_to_ascii(*ascii_poly, ctx);
memcpy(binary_rep + string_len,
single_poly_string->ptr,
single_poly_string->len);
string_len += single_poly_string->len;
string_delete(single_poly_string);
}
binary_rep[string_len] = '\0';
ascii_string = get_bin_arr_to_ascii(binary_rep);
free(binary_rep);
return ascii_string;
}
/*------------------------------------------------------------------------*/
string *
poly_to_ascii(const fmpz_poly_t poly,
const ntru_context *ctx)
{
string *result_string = ntru_malloc(sizeof(*result_string));
char *string_rep = ntru_malloc(CHAR_SIZE * (ctx->N));
for (uint32_t j = 0; j < ctx->N; j++) {
uint8_t coeff = fmpz_poly_get_coeff_ui(poly, j);
if (coeff == ctx->q)
string_rep[j] = '\0';
else
string_rep[j] = (char)coeff;
}
result_string->ptr = string_rep;
result_string->len = ctx->N;
return result_string;
}
/*------------------------------------------------------------------------*/
string *
poly_to_base64(const fmpz_poly_t poly,
const ntru_context *ctx)
{
string *result_string = ntru_malloc(sizeof(*result_string));
string *string_rep = NULL;
gchar *base64_string = NULL,
*tmp = NULL;
string_rep = poly_to_ascii(poly, ctx);
tmp = g_base64_encode((const guchar *)string_rep->ptr,
string_rep->len);
base64_string = g_base64_encode((const guchar *)tmp,
strlen(tmp));
result_string->ptr = base64_string;
result_string->len = strlen(base64_string);
string_delete(string_rep);
free(tmp);
return result_string;
}
/*------------------------------------------------------------------------*/
string *
poly_arr_to_base64(fmpz_poly_t **poly_array,
const ntru_context *ctx)
{
fmpz_poly_t *ascii_poly;
char *string_rep = NULL;
size_t string_len = 0;
string *result_string = ntru_malloc(sizeof(*result_string));
size_t old_length = 0,
new_length;
gchar *base64_string = NULL,
*tmp = NULL;
/*
* parse the polynomial coefficients into a string
*/
string_rep = ntru_calloc(1, CHAR_SIZE * (ctx->N + 1));
while ((ascii_poly = *poly_array++)) {
string *poly_str;
poly_str = poly_to_ascii(*ascii_poly, ctx);
new_length = CHAR_SIZE * poly_str->len;
REALLOC(string_rep,
old_length +
new_length);
old_length += new_length;
memcpy(string_rep + string_len,
poly_str->ptr,
poly_str->len);
string_len += poly_str->len;
string_delete(poly_str);
}
tmp = g_base64_encode((const guchar *)string_rep, string_len);
base64_string = g_base64_encode((const guchar *)tmp,
strlen(tmp));
result_string->ptr = base64_string;
result_string->len = strlen(base64_string);
free(string_rep);
free(tmp);
return result_string;
}
/*------------------------------------------------------------------------*/

137
src/poly_ascii.h Normal file
View File

@ -0,0 +1,137 @@
/*
* Copyright (C) 2014 FH Bielefeld
*
* This file is part of a FH Bielefeld project.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
/**
* @file poly_ascii.h
* Header for the internal API of poly_ascii.c.
* @brief header for poly_ascii.c
*/
#ifndef NTRU_POLY_ASCII_H_
#define NTRU_POLY_ASCII_H_
#include "common.h"
#include "context.h"
#include "ntru_string.h"
#include <fmpz_poly.h>
#include <fmpz.h>
/**
* Convert a single binary polynomial back to a real string.
* The polynomial coefficients represent a binary format of the
* ascii string with the following mapping:
*
* 1 => 1
*
* -1 => 0
*
* 2 => 0
*
* The 2's are only used for filling up the rest of the polynomial,
* so they will just end up as '\0's at the end of the string and will
* not confuse the result.
*
* @param poly the binary polynomial to convert
* @param ctx the NTRUEncrypt context
* @return the real string, newly allocated
*/
string *
bin_poly_to_ascii(const fmpz_poly_t poly,
const ntru_context *ctx);
/**
* Convert an array of binary polynomials back to a real string.
* The polynomial coefficients represent a binary format of the
* ascii string with the following mapping:
*
* 1 => 1
*
* -1 => 0
*
* 2 => 0
*
* The 2's are only used for filling up the last polynomial, so they will
* just end up as '\0's at the end of the string and will not confuse
* the result.
*
* @param bin_poly_arr the array of polynomials
* @param ctx the NTRUEncrypt context
* @return the real string, newly allocated
*/
string *
bin_poly_arr_to_ascii(fmpz_poly_t **bin_poly_arr,
const ntru_context *ctx);
/**
* Convert a single polynom back to a real string which is
* ascii encoded (full 256 C char spectrum).
* The polynomial coefficients are expected to be in the range
* [0, q-1] and will be casted back to chars without any mapping.
*
* Trailing q coefficients are only used for filling up the rest of
* a polynomial with '\0', so they will not confuse the result.
*
* @param poly the polynomial to convert
* @param ctx the NTRUEncrypt context
* @return the real string, newly allocated
*/
string *
poly_to_ascii(const fmpz_poly_t poly,
const ntru_context *ctx);
/**
* Convert a single polynom back to a real string which is
* base64 encoded.
* The polynomial coefficients are expected to be in the range
* [0, q-1] and will be casted back to chars without any mapping.
*
* Trailing q coefficients are only used for filling up the rest of
* a polynomial with '\0', so they will not confuse the result.
*
* @param poly the polynomial to convert
* @param ctx the NTRUEncrypt context
* @return the real string, newly allocated
*/
string *
poly_to_base64(const fmpz_poly_t poly,
const ntru_context *ctx);
/**
* Convert an array of polynomials back to a real string which
* is base64 encoded.
* The polynomial coefficients are expected to be in the range
* [0, q-1] and will be casted back to chars without any mapping.
*
* Trailing q coefficients are only used for filling up the rest of
* a polynomial with '\0', so they will not confuse the result.
*
* @param poly_arr the array of polynomials
* @param ctx the NTRUEncrypt context
* @return the real string, newly allocated
*/
string *
poly_arr_to_base64(fmpz_poly_t **poly_arr, const ntru_context *ctx);
#endif /* NTRU_POLY_ASCII_H_ */