336 lines
10 KiB
C
336 lines
10 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2011 William Hart
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include <gmp.h>
|
||
|
#include "flint.h"
|
||
|
#include "fmpz.h"
|
||
|
#include "fmpz_vec.h"
|
||
|
#include "fmpz_poly.h"
|
||
|
#include "mpn_extras.h"
|
||
|
|
||
|
/*
|
||
|
Divide (arrayg, limbsg) by the positive value gc inplace and
|
||
|
return the number of limbs written
|
||
|
*/
|
||
|
mp_size_t flint_mpn_tdiv_q_fmpz_inplace(mp_ptr arrayg, mp_size_t limbsg, fmpz_t gc)
|
||
|
{
|
||
|
if (fmpz_size(gc) == 1)
|
||
|
{
|
||
|
mpn_divmod_1(arrayg, arrayg, limbsg, fmpz_get_ui(gc));
|
||
|
return limbsg - (arrayg[limbsg - 1] == 0);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mp_size_t tlimbs;
|
||
|
__mpz_struct * mpz_ptr = COEFF_TO_PTR(*gc);
|
||
|
|
||
|
mp_ptr temp = flint_malloc(limbsg*sizeof(mp_limb_t));
|
||
|
flint_mpn_copyi(temp, arrayg, limbsg);
|
||
|
|
||
|
mpn_tdiv_q(arrayg, temp, limbsg, mpz_ptr->_mp_d, mpz_ptr->_mp_size);
|
||
|
tlimbs = limbsg - mpz_ptr->_mp_size + 1;
|
||
|
tlimbs -= (arrayg[tlimbs - 1] == 0);
|
||
|
|
||
|
flint_free(temp);
|
||
|
return tlimbs;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Returns 1 if sign * (G, glen) * (Q, qlen) = (P, len), else returns 0.
|
||
|
Temp requires space for glen + qlen - 1 coefficients
|
||
|
*/
|
||
|
int multiplies_out(fmpz * P, slong len, const fmpz * Q, slong qlen,
|
||
|
const fmpz * G, slong glen, slong sign, fmpz * temp)
|
||
|
{
|
||
|
int divides = 0;
|
||
|
|
||
|
/* multiply out */
|
||
|
if (qlen >= glen)
|
||
|
_fmpz_poly_mul(temp, Q, qlen, G, glen);
|
||
|
else
|
||
|
_fmpz_poly_mul(temp, G, glen, Q, qlen);
|
||
|
if (sign < WORD(0)) _fmpz_vec_neg(temp, temp, glen + qlen - 1);
|
||
|
|
||
|
/* check if quotient really was exact */
|
||
|
divides = (glen + qlen - 1 == len && _fmpz_vec_equal(temp, P, len));
|
||
|
|
||
|
return divides;
|
||
|
}
|
||
|
|
||
|
/* Assumes len1 != 0 != len2 */
|
||
|
int
|
||
|
_fmpz_poly_gcd_heuristic(fmpz * res, const fmpz * poly1, slong len1,
|
||
|
const fmpz * poly2, slong len2)
|
||
|
{
|
||
|
ulong bits1, bits2, max_bits, pack_bits, bound_bits, bits_G, bits_Q;
|
||
|
ulong limbs1, limbs2, limbsg, pack_limbs, qlimbs;
|
||
|
ulong log_glen, log_length;
|
||
|
slong sign1, sign2, glen, qlen;
|
||
|
fmpz_t ac, bc, d, gc;
|
||
|
fmpz * A, * B, * G, * Q, * t;
|
||
|
mp_ptr array1, array2, arrayg, q, temp;
|
||
|
int divides;
|
||
|
|
||
|
fmpz_init(ac);
|
||
|
fmpz_init(bc);
|
||
|
fmpz_init(d);
|
||
|
|
||
|
/* compute gcd of content of poly1 and poly2 */
|
||
|
_fmpz_poly_content(ac, poly1, len1);
|
||
|
_fmpz_poly_content(bc, poly2, len2);
|
||
|
fmpz_gcd(d, ac, bc);
|
||
|
|
||
|
/* special case, one of the polys is a constant */
|
||
|
if (len2 == 1) /* if len1 == 1 then so does len2 */
|
||
|
{
|
||
|
fmpz_set(res, d);
|
||
|
|
||
|
fmpz_clear(ac);
|
||
|
fmpz_clear(bc);
|
||
|
fmpz_clear(d);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* divide poly1 and poly2 by their content */
|
||
|
A = _fmpz_vec_init(len1);
|
||
|
B = _fmpz_vec_init(len2);
|
||
|
_fmpz_vec_scalar_divexact_fmpz(A, poly1, len1, ac);
|
||
|
_fmpz_vec_scalar_divexact_fmpz(B, poly2, len2, bc);
|
||
|
fmpz_clear(ac);
|
||
|
fmpz_clear(bc);
|
||
|
|
||
|
/* special case, one of the polys is length 2 */
|
||
|
if (len2 == 2) /* if len1 == 2 then so does len2 */
|
||
|
{
|
||
|
Q = _fmpz_vec_init(len1 - len2 + 1);
|
||
|
if (_fmpz_poly_divides(Q, A, len1, B, 2))
|
||
|
{
|
||
|
_fmpz_vec_scalar_mul_fmpz(res, B, 2, d);
|
||
|
if (fmpz_sgn(res + 1) < 0)
|
||
|
_fmpz_vec_neg(res, res, 2);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpz_set(res, d);
|
||
|
fmpz_zero(res + 1);
|
||
|
}
|
||
|
|
||
|
fmpz_clear(d);
|
||
|
_fmpz_vec_clear(A, len1);
|
||
|
_fmpz_vec_clear(B, len2);
|
||
|
_fmpz_vec_clear(Q, len1 - len2 + 1);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Determine how many bits (pack_bits) to pack into. The bound
|
||
|
bound_bits ensures that if G | A and G | B with G primitive
|
||
|
then G is the gcd of A and B. The bound is taken from
|
||
|
http://arxiv.org/abs/cs/0206032v1
|
||
|
*/
|
||
|
bits1 = FLINT_ABS(_fmpz_vec_max_bits(A, len1));
|
||
|
bits2 = FLINT_ABS(_fmpz_vec_max_bits(B, len2));
|
||
|
max_bits = FLINT_MAX(bits1, bits2);
|
||
|
|
||
|
bound_bits = FLINT_MIN(bits1, bits2) + 6;
|
||
|
pack_bits = FLINT_MAX(bound_bits, max_bits); /* need to pack original polys */
|
||
|
pack_limbs = (pack_bits - 1)/FLINT_BITS + 1;
|
||
|
|
||
|
if (pack_bits >= 32) /* pack into multiples of limbs if >= 32 bits */
|
||
|
pack_bits = FLINT_BITS*pack_limbs;
|
||
|
|
||
|
/* allocate space to pack into */
|
||
|
limbs1 = (pack_bits*len1 - 1)/FLINT_BITS + 1;
|
||
|
limbs2 = (pack_bits*len2 - 1)/FLINT_BITS + 1;
|
||
|
array1 = flint_calloc(limbs1, sizeof(mp_limb_t));
|
||
|
array2 = flint_calloc(limbs2, sizeof(mp_limb_t));
|
||
|
arrayg = flint_calloc(limbs2, sizeof(mp_limb_t));
|
||
|
|
||
|
/* pack first poly and normalise */
|
||
|
sign1 = (slong) fmpz_sgn(A + len1 - 1);
|
||
|
_fmpz_poly_bit_pack(array1, A, len1, pack_bits, sign1);
|
||
|
while (array1[limbs1 - 1] == 0) limbs1--;
|
||
|
|
||
|
/* pack second poly and normalise */
|
||
|
sign2 = (slong) fmpz_sgn(B + len2 - 1);
|
||
|
_fmpz_poly_bit_pack(array2, B, len2, pack_bits, sign2);
|
||
|
while (array2[limbs2 - 1] == 0) limbs2--;
|
||
|
|
||
|
/* compute integer GCD */
|
||
|
limbsg = flint_mpn_gcd_full(arrayg, array1, limbs1, array2, limbs2);
|
||
|
|
||
|
/*
|
||
|
Make space for unpacked gcd. May have one extra coeff due to
|
||
|
1 0 -x being packed as 0 -1 -x.
|
||
|
*/
|
||
|
glen = FLINT_MIN((limbsg*FLINT_BITS)/pack_bits + 1, len2);
|
||
|
G = _fmpz_vec_init(glen);
|
||
|
|
||
|
/*
|
||
|
clear bits after g in arrayg so they are not inadvertently
|
||
|
pulled into G after bit unpacking
|
||
|
*/
|
||
|
flint_mpn_zero(arrayg + limbsg, limbs2-limbsg);
|
||
|
|
||
|
/* unpack gcd */
|
||
|
_fmpz_poly_bit_unpack(G, glen, arrayg, pack_bits, 0);
|
||
|
while (G[glen - 1] == 0) glen--;
|
||
|
|
||
|
/* divide by any content */
|
||
|
fmpz_init(gc);
|
||
|
_fmpz_poly_content(gc, G, glen);
|
||
|
|
||
|
if (!fmpz_is_one(gc))
|
||
|
limbsg = flint_mpn_tdiv_q_fmpz_inplace(arrayg, limbsg, gc);
|
||
|
|
||
|
/* make space for quotient and remainder of first poly by gcd */
|
||
|
qlimbs = limbs1 - limbsg + 1;
|
||
|
qlen = FLINT_MIN(len1, (qlimbs*FLINT_BITS)/pack_bits + 1);
|
||
|
qlimbs = (qlen*pack_bits - 1)/FLINT_BITS + 1;
|
||
|
q = flint_calloc(qlimbs, sizeof(mp_limb_t));
|
||
|
temp = flint_malloc(limbsg*sizeof(mp_limb_t));
|
||
|
|
||
|
divides = 0;
|
||
|
|
||
|
if (flint_mpn_divides(q, array1, limbs1, arrayg, limbsg, temp))
|
||
|
{
|
||
|
/* unpack quotient of first poly by gcd */
|
||
|
Q = _fmpz_vec_init(len1);
|
||
|
t = _fmpz_vec_init(len1 + glen);
|
||
|
_fmpz_poly_bit_unpack(Q, qlen, q, pack_bits, 0);
|
||
|
while (Q[qlen - 1] == 0) qlen--;
|
||
|
|
||
|
/* divide by content */
|
||
|
_fmpz_vec_scalar_divexact_fmpz(G, G, glen, gc);
|
||
|
|
||
|
/* check if we really need to multiply out to check for exact quotient */
|
||
|
bits_G = FLINT_ABS(_fmpz_vec_max_bits(G, glen));
|
||
|
bits_Q = FLINT_ABS(_fmpz_vec_max_bits(Q, qlen));
|
||
|
log_glen = FLINT_BIT_COUNT(glen);
|
||
|
log_length = FLINT_MIN(log_glen, FLINT_BIT_COUNT(qlen));
|
||
|
|
||
|
divides = (bits_G + bits_Q + log_length < pack_bits);
|
||
|
|
||
|
if (!divides) /* need to multiply out to check exact quotient */
|
||
|
divides = multiplies_out(A, len1, Q, qlen, G, glen, sign1, t);
|
||
|
|
||
|
if (divides) /* quotient really was exact */
|
||
|
{
|
||
|
flint_mpn_zero(q, qlimbs);
|
||
|
|
||
|
if (flint_mpn_divides(q, array2, limbs2, arrayg, limbsg, temp))
|
||
|
{
|
||
|
/* unpack quotient of second poly by gcd */
|
||
|
qlimbs = limbs2 - limbsg + 1;
|
||
|
qlen = FLINT_MIN(len2, (qlimbs*FLINT_BITS - 1)/pack_bits + 1);
|
||
|
_fmpz_poly_bit_unpack(Q, qlen, q, pack_bits, 0);
|
||
|
while (Q[qlen - 1] == 0) qlen--;
|
||
|
|
||
|
/* check if we really need to multiply out to check for exact quotient */
|
||
|
bits_Q = FLINT_ABS(_fmpz_vec_max_bits(Q, qlen));
|
||
|
log_length = FLINT_MIN(log_glen, FLINT_BIT_COUNT(qlen));
|
||
|
|
||
|
divides = (bits_G + bits_Q + log_length < pack_bits);
|
||
|
|
||
|
if (!divides) /* we need to multiply out */
|
||
|
divides = multiplies_out(B, len2, Q, qlen, G, glen, sign1, t);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
_fmpz_vec_clear(t, len1 + glen);
|
||
|
_fmpz_vec_clear(Q, len1);
|
||
|
}
|
||
|
|
||
|
flint_free(q);
|
||
|
flint_free(temp);
|
||
|
flint_free(arrayg);
|
||
|
flint_free(array1);
|
||
|
flint_free(array2);
|
||
|
fmpz_clear(gc);
|
||
|
|
||
|
_fmpz_vec_clear(A, len1);
|
||
|
_fmpz_vec_clear(B, len2);
|
||
|
|
||
|
/* we found the gcd, so multiply by content */
|
||
|
if (divides)
|
||
|
{
|
||
|
_fmpz_vec_zero(res + glen, len2 - glen);
|
||
|
_fmpz_vec_scalar_mul_fmpz(res, G, glen, d);
|
||
|
}
|
||
|
|
||
|
fmpz_clear(d);
|
||
|
_fmpz_vec_clear(G, glen);
|
||
|
|
||
|
return divides;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
fmpz_poly_gcd_heuristic(fmpz_poly_t res, const fmpz_poly_t poly1,
|
||
|
const fmpz_poly_t poly2)
|
||
|
{
|
||
|
if (poly1->length < poly2->length)
|
||
|
{
|
||
|
return fmpz_poly_gcd_heuristic(res, poly2, poly1);
|
||
|
}
|
||
|
else /* len1 >= len2 >= 0 */
|
||
|
{
|
||
|
const slong len1 = poly1->length;
|
||
|
const slong len2 = poly2->length;
|
||
|
int done = 1; /* len1 = 0 or len2 = 0 need done = 1 */
|
||
|
|
||
|
if (len1 == 0) /* len1 = len2 = 0 */
|
||
|
{
|
||
|
fmpz_poly_zero(res);
|
||
|
}
|
||
|
else if (len2 == 0) /* len1 > len2 = 0 */
|
||
|
{
|
||
|
if (fmpz_sgn(poly1->coeffs + (len1 - 1)) > 0)
|
||
|
fmpz_poly_set(res, poly1);
|
||
|
else
|
||
|
fmpz_poly_neg(res, poly1);
|
||
|
}
|
||
|
else /* len1 >= len2 >= 1 */
|
||
|
{
|
||
|
/* underscore function automatically takes care of aliasing */
|
||
|
|
||
|
fmpz_poly_fit_length(res, len2);
|
||
|
|
||
|
done = _fmpz_poly_gcd_heuristic(res->coeffs, poly1->coeffs, len1,
|
||
|
poly2->coeffs, len2);
|
||
|
|
||
|
if (done)
|
||
|
{
|
||
|
_fmpz_poly_set_length(res, len2);
|
||
|
_fmpz_poly_normalise(res);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return done;
|
||
|
}
|
||
|
}
|