98 lines
2.4 KiB
C
98 lines
2.4 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2011 Fredrik Johansson
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "arith.h"
|
||
|
|
||
|
static __inline__ void __legendre_denom(fmpz_t den, ulong n)
|
||
|
{
|
||
|
ulong d, k;
|
||
|
d = k = n >> 1;
|
||
|
|
||
|
while (k)
|
||
|
{
|
||
|
k >>= 1;
|
||
|
d += k;
|
||
|
}
|
||
|
|
||
|
fmpz_one(den);
|
||
|
fmpz_mul_2exp(den, den, d);
|
||
|
}
|
||
|
|
||
|
void _arith_legendre_polynomial(fmpz * coeffs, fmpz_t den, ulong n)
|
||
|
{
|
||
|
fmpz * r;
|
||
|
int odd;
|
||
|
slong k;
|
||
|
ulong L;
|
||
|
|
||
|
L = n / 2;
|
||
|
odd = n % 2;
|
||
|
|
||
|
r = coeffs + odd;
|
||
|
|
||
|
__legendre_denom(den, n);
|
||
|
|
||
|
fmpz_bin_uiui(r, n, L);
|
||
|
fmpz_mul(r, r, den);
|
||
|
if (odd)
|
||
|
fmpz_mul_ui(r, r, L + 1);
|
||
|
fmpz_fdiv_q_2exp(r, r, 2*L);
|
||
|
if (L % 2)
|
||
|
fmpz_neg(r, r);
|
||
|
|
||
|
for (k = 1; k <= L; k++)
|
||
|
{
|
||
|
fmpz_mul2_uiui(r + 2, r, L + 1 - k, 2*k + 2*L - 1 + 2*odd);
|
||
|
fmpz_divexact2_uiui(r + 2, r + 2, k, 2*k - 1 + 2*odd);
|
||
|
fmpz_neg(r + 2, r + 2);
|
||
|
r += 2;
|
||
|
}
|
||
|
|
||
|
for (k = 1 - odd; k < n; k += 2)
|
||
|
fmpz_zero(coeffs + k);
|
||
|
}
|
||
|
|
||
|
void arith_legendre_polynomial(fmpq_poly_t poly, ulong n)
|
||
|
{
|
||
|
if (n == 0)
|
||
|
{
|
||
|
fmpq_poly_set_ui(poly, UWORD(1));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
fmpq_poly_fit_length(poly, n + 1);
|
||
|
|
||
|
if (n == 1)
|
||
|
{
|
||
|
fmpz_zero(poly->coeffs);
|
||
|
fmpz_one(poly->coeffs + 1);
|
||
|
fmpz_one(poly->den);
|
||
|
}
|
||
|
else
|
||
|
_arith_legendre_polynomial(poly->coeffs, poly->den, n);
|
||
|
|
||
|
_fmpq_poly_set_length(poly, n + 1);
|
||
|
}
|