243 lines
6.2 KiB
C
243 lines
6.2 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2011 Jan Tuitman
|
||
|
Copyright (C) 2011, 2012 Sebastian Pancratz
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "padic.h"
|
||
|
|
||
|
/*
|
||
|
Returns whether \code{op} has a square root modulo $p^N$ and if
|
||
|
so sets \code{rop} to such an element.
|
||
|
|
||
|
Assumes that \code{op} is a unit modulo $p^N$. Assumes $p$ is an
|
||
|
odd prime.
|
||
|
|
||
|
In the current implementation, allows aliasing.
|
||
|
*/
|
||
|
static int _padic_sqrt_p(fmpz_t rop, const fmpz_t op, const fmpz_t p, slong N)
|
||
|
{
|
||
|
int ans;
|
||
|
|
||
|
if (N == 1)
|
||
|
{
|
||
|
ans = fmpz_sqrtmod(rop, op, p);
|
||
|
return ans;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
slong *e, i, n;
|
||
|
fmpz *W, *pow, *u;
|
||
|
|
||
|
e = _padic_lifts_exps(&n, N);
|
||
|
|
||
|
W = _fmpz_vec_init(2 + 2 * n);
|
||
|
pow = W + 2;
|
||
|
u = W + (2 + n);
|
||
|
|
||
|
_padic_lifts_pows(pow, e, n, p);
|
||
|
|
||
|
/* Compute reduced units */
|
||
|
{
|
||
|
fmpz_mod(u, op, pow);
|
||
|
}
|
||
|
for (i = 1; i < n; i++)
|
||
|
{
|
||
|
fmpz_mod(u + i, u + (i - 1), pow + i);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Run Newton iteration for the inverse square root,
|
||
|
using the update formula
|
||
|
z := z - z (u z^2 - 1) / 2
|
||
|
for all but the last step. The last step is
|
||
|
replaced with
|
||
|
b := u z mod p^{N'}
|
||
|
z := b + z (u - b^2) / 2 mod p^{N}.
|
||
|
*/
|
||
|
i = n - 1;
|
||
|
{
|
||
|
ans = fmpz_sqrtmod(rop, u + i, p);
|
||
|
if (!ans)
|
||
|
goto exit;
|
||
|
fmpz_invmod(rop, rop, p);
|
||
|
}
|
||
|
for (i--; i >= 1; i--)
|
||
|
{
|
||
|
fmpz_mul(W, rop, rop);
|
||
|
fmpz_mul(W + 1, u + i, W);
|
||
|
fmpz_sub_ui(W + 1, W + 1, 1);
|
||
|
|
||
|
if (fmpz_is_odd(W + 1))
|
||
|
fmpz_add(W + 1, W + 1, pow + i);
|
||
|
fmpz_fdiv_q_2exp(W + 1, W + 1, 1);
|
||
|
|
||
|
fmpz_mul(W, W + 1, rop);
|
||
|
fmpz_sub(rop, rop, W);
|
||
|
fmpz_mod(rop, rop, pow + i);
|
||
|
}
|
||
|
{
|
||
|
fmpz_mul(W, u + 1, rop);
|
||
|
fmpz_mul(W + 1, W, W);
|
||
|
fmpz_sub(W + 1, u + 0, W + 1);
|
||
|
if (fmpz_is_odd(W + 1))
|
||
|
fmpz_add(W + 1, W + 1, pow + 0);
|
||
|
fmpz_fdiv_q_2exp(W + 1, W + 1, 1);
|
||
|
fmpz_mul(rop, rop, W + 1);
|
||
|
fmpz_add(rop, W, rop);
|
||
|
fmpz_mod(rop, rop, pow + 0);
|
||
|
}
|
||
|
|
||
|
exit:
|
||
|
|
||
|
flint_free(e);
|
||
|
_fmpz_vec_clear(W, 2 + 2 * n);
|
||
|
|
||
|
return ans;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Returns whether \code{op} has a square root modulo $2^N$ and if
|
||
|
so sets \code{rop} to such an element.
|
||
|
|
||
|
Assumes that \code{op} is a unit modulo $2^N$.
|
||
|
|
||
|
In the current implementation, allows aliasing.
|
||
|
*/
|
||
|
static int _padic_sqrt_2(fmpz_t rop, const fmpz_t op, slong N)
|
||
|
{
|
||
|
if (fmpz_fdiv_ui(op, 8) != 1)
|
||
|
return 0;
|
||
|
|
||
|
if (N <= 3)
|
||
|
{
|
||
|
fmpz_one(rop);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
slong *e, i, n;
|
||
|
fmpz *W, *u;
|
||
|
|
||
|
i = FLINT_CLOG2(N);
|
||
|
|
||
|
/* Compute sequence of exponents */
|
||
|
e = flint_malloc((i + 2) * sizeof(slong));
|
||
|
for (e[i = 0] = N; e[i] > 3; i++)
|
||
|
e[i + 1] = (e[i] + 3) / 2;
|
||
|
n = i + 1;
|
||
|
|
||
|
W = _fmpz_vec_init(2 + n);
|
||
|
u = W + 2;
|
||
|
|
||
|
/* Compute reduced units */
|
||
|
{
|
||
|
fmpz_fdiv_r_2exp(u, op, e[0]);
|
||
|
}
|
||
|
for (i = 1; i < n; i++)
|
||
|
{
|
||
|
fmpz_fdiv_r_2exp(u + i, u + (i - 1), e[i]);
|
||
|
}
|
||
|
|
||
|
/* Run Newton iteration */
|
||
|
fmpz_one(rop);
|
||
|
for (i = n - 2; i >= 1; i--) /* z := z - z (a z^2 - 1) / 2 */
|
||
|
{
|
||
|
fmpz_mul(W, rop, rop);
|
||
|
fmpz_mul(W + 1, u + i, W);
|
||
|
fmpz_sub_ui(W + 1, W + 1, 1);
|
||
|
fmpz_fdiv_q_2exp(W + 1, W + 1, 1);
|
||
|
fmpz_mul(W, W + 1, rop);
|
||
|
fmpz_sub(rop, rop, W);
|
||
|
fmpz_fdiv_r_2exp(rop, rop, e[i]);
|
||
|
}
|
||
|
{
|
||
|
fmpz_mul(W, u + 1, rop);
|
||
|
fmpz_mul(W + 1, W, W);
|
||
|
fmpz_sub(W + 1, u + 0, W + 1);
|
||
|
fmpz_fdiv_q_2exp(W + 1, W + 1, 1);
|
||
|
fmpz_mul(rop, rop, W + 1);
|
||
|
fmpz_add(rop, W, rop);
|
||
|
}
|
||
|
fmpz_fdiv_r_2exp(rop, rop, e[0]);
|
||
|
|
||
|
flint_free(e);
|
||
|
_fmpz_vec_clear(W, 2 + n);
|
||
|
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int _padic_sqrt(fmpz_t rop, const fmpz_t op, const fmpz_t p, slong N)
|
||
|
{
|
||
|
if (fmpz_equal_ui(p, 2))
|
||
|
{
|
||
|
return _padic_sqrt_2(rop, op, N);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return _padic_sqrt_p(rop, op, p, N);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int padic_sqrt(padic_t rop, const padic_t op, const padic_ctx_t ctx)
|
||
|
{
|
||
|
if (padic_is_zero(op))
|
||
|
{
|
||
|
padic_zero(rop);
|
||
|
return 1;
|
||
|
}
|
||
|
if (padic_val(op) & WORD(1))
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
padic_val(rop) = padic_val(op) / 2;
|
||
|
|
||
|
/*
|
||
|
In this case, if there is a square root it will be
|
||
|
zero modulo $p^N$. We only have to establish whether
|
||
|
or not the element \code{op} is a square.
|
||
|
*/
|
||
|
if (padic_val(rop) >= padic_prec(rop))
|
||
|
{
|
||
|
int ans;
|
||
|
|
||
|
if (fmpz_equal_ui(ctx->p, 2))
|
||
|
{
|
||
|
ans = (fmpz_fdiv_ui(padic_unit(op), 8) == 1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ans = fmpz_sqrtmod(padic_unit(rop), padic_unit(op), ctx->p);
|
||
|
}
|
||
|
padic_zero(rop);
|
||
|
|
||
|
return ans;
|
||
|
}
|
||
|
|
||
|
return _padic_sqrt(padic_unit(rop),
|
||
|
padic_unit(op), ctx->p, padic_prec(rop) - padic_val(rop));
|
||
|
}
|
||
|
|