pqc/external/flint-2.4.3/fmpz_poly/xgcd_modular.c

241 lines
7.2 KiB
C
Raw Normal View History

2014-05-18 22:03:37 +00:00
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2011 William Hart
Copyright (C) 2011 Sebastian Pancratz
******************************************************************************/
#include <gmp.h>
#include "flint.h"
#include "fmpz.h"
#include "fmpz_vec.h"
#include "fmpz_poly.h"
#include "mpn_extras.h"
void _fmpz_poly_xgcd_modular(fmpz_t r, fmpz * s, fmpz * t,
const fmpz * poly1, slong len1,
const fmpz * poly2, slong len2)
{
mp_ptr G, S, T, A, B, T1, T2;
fmpz_t prod;
int stabilised = 0, first;
mp_limb_t p;
mp_bitcnt_t s_bits = 0, t_bits = 0;
/* Compute resultant of input polys */
_fmpz_poly_resultant(r, poly1, len1, poly2, len2);
if (fmpz_is_zero(r))
return;
fmpz_init(prod);
fmpz_one(prod);
_fmpz_vec_zero(s, len2);
_fmpz_vec_zero(t, len1);
p = (UWORD(1) << (FLINT_BITS - 1));
G = _nmod_vec_init(4 * len1 + 5 * len2 - 2);
S = G + len2;
T = S + len2;
A = T + len1;
B = A + len1;
T1 = B + len2;
T2 = T1 + (len1 + len2 - 1);
_nmod_vec_zero(S, len2 + len1); /* S = T = 0 */
first = 1;
for (;;)
{
mp_limb_t R;
nmod_t mod;
/* Get next prime */
p = n_nextprime(p, 0);
/* Resultant mod p */
R = fmpz_fdiv_ui(r, p);
/* If p divides resultant or either leading coeff, discard p */
if ((fmpz_fdiv_ui(poly1 + len1 - 1, p) == WORD(0)) ||
(fmpz_fdiv_ui(poly2 + len2 - 1, p) == WORD(0)) || (R == 0))
continue;
nmod_init(&mod, p);
/* Reduce polynomials modulo p */
_fmpz_vec_get_nmod_vec(A, poly1, len1, mod);
_fmpz_vec_get_nmod_vec(B, poly2, len2, mod);
if (stabilised) /* CRT has stabilised, probably don't need more xgcds */
{
slong tlen;
/* Multiply out A*S + B*T to see if it is R mod p */
_fmpz_vec_get_nmod_vec(S, s, len2, mod);
_fmpz_vec_get_nmod_vec(T, t, len1, mod);
_nmod_poly_mul(T1, A, len1, S, len2, mod);
_nmod_poly_mul(T2, T, len1, B, len2, mod);
_nmod_vec_add(T1, T1, T2, len1 + len2 - 1, mod);
tlen = len1 + len2 - 1;
FMPZ_VEC_NORM(T1, tlen);
if (tlen == 1 && T1[0] == R) /* It is, so this prime is good */
fmpz_mul_ui(prod, prod, p);
else
stabilised = 0; /* It's not, keep going with xgcds */
}
if (!stabilised) /* Need to keep computing xgcds mod p */
{
mp_limb_t RGinv;
/* Compute xgcd mod p */
_nmod_poly_xgcd(G, S, T, A, len1, B, len2, mod);
RGinv = n_invmod(G[0], mod.n);
RGinv = n_mulmod2_preinv(RGinv, R, mod.n, mod.ninv);
/* Scale appropriately */
_nmod_vec_scalar_mul_nmod(S, S, len2, RGinv, mod);
_nmod_vec_scalar_mul_nmod(T, T, len1, RGinv, mod);
if (first) /* First time around set s and t to S and T */
{
_fmpz_vec_set_nmod_vec(s, S, len2, mod);
_fmpz_vec_set_nmod_vec(t, T, len1, mod);
fmpz_set_ui(prod, p);
stabilised = 1; /* Optimise the case where one prime is enough */
first = 0;
}
else /* Otherwise do CRT */
{
mp_bitcnt_t new_s_bits, new_t_bits;
_fmpz_poly_CRT_ui(s, s, len2, prod, S, len2, mod.n, mod.ninv, 1);
_fmpz_poly_CRT_ui(t, t, len1, prod, T, len1, mod.n, mod.ninv, 1);
fmpz_mul_ui(prod, prod, p);
/* Check to see if CRT has stabilised */
new_s_bits = FLINT_ABS(_fmpz_vec_max_bits(s, len2));
new_t_bits = FLINT_ABS(_fmpz_vec_max_bits(t, len1));
stabilised = (s_bits == new_s_bits && t_bits == new_t_bits);
s_bits = new_s_bits;
t_bits = new_t_bits;
}
}
if (stabilised)
{
slong bound1, bound2, bound;
bound1 = FLINT_BIT_COUNT(len2)
+ FLINT_ABS(_fmpz_vec_max_bits(poly1, len1))
+ FLINT_ABS(_fmpz_vec_max_bits(s, len2));
bound2 = FLINT_BIT_COUNT(len2)
+ FLINT_ABS(_fmpz_vec_max_bits(poly2, len2))
+ FLINT_ABS(_fmpz_vec_max_bits(t, len1));
bound = 4 + FLINT_MAX(fmpz_bits(r), FLINT_MAX(bound1, bound2));
if (fmpz_bits(prod) > bound)
break;
}
}
_nmod_vec_clear(G);
fmpz_clear(prod);
}
void
fmpz_poly_xgcd_modular(fmpz_t r, fmpz_poly_t s, fmpz_poly_t t,
const fmpz_poly_t poly1, const fmpz_poly_t poly2)
{
if (poly1->length < poly2->length)
{
fmpz_poly_xgcd_modular(r, t, s, poly2, poly1);
} else /* len1 >= len2 >= 0 */
{
const slong len1 = poly1->length;
const slong len2 = poly2->length;
fmpz *S, *T;
fmpz_poly_t temp1, temp2;
if (len1 == 0 || len2 == 0)
{
fmpz_zero(r);
}
else /* len1 >= len2 >= 1 */
{
if (s == poly1 || s == poly2)
{
fmpz_poly_init2(temp1, len2);
S = temp1->coeffs;
}
else
{
fmpz_poly_fit_length(s, len2);
S = s->coeffs;
}
if (t == poly1 || t == poly2)
{
fmpz_poly_init2(temp2, len1);
T = temp2->coeffs;
}
else
{
fmpz_poly_fit_length(t, len1);
T = t->coeffs;
}
_fmpz_poly_xgcd_modular(r, S, T, poly1->coeffs, len1,
poly2->coeffs, len2);
if (s == poly1 || s == poly2)
{
fmpz_poly_swap(s, temp1);
fmpz_poly_clear(temp1);
}
if (t == poly1 || t == poly2)
{
fmpz_poly_swap(t, temp2);
fmpz_poly_clear(temp2);
}
_fmpz_poly_set_length(s, len2);
_fmpz_poly_normalise(s);
_fmpz_poly_set_length(t, len1);
_fmpz_poly_normalise(t);
}
}
}