122 lines
3.6 KiB
C
122 lines
3.6 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2011, 2013 Sebastian Pancratz
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "fmpz_mat.h"
|
||
|
#include "padic_mat.h"
|
||
|
|
||
|
/*
|
||
|
Assumptions:
|
||
|
|
||
|
o That the matrix dimensions be compatible.
|
||
|
o That the matrices be non-empty.
|
||
|
o That ord_p(A) >= ord_p(B).
|
||
|
*/
|
||
|
|
||
|
void _padic_mat_sub(padic_mat_t C, const padic_mat_t A, const padic_mat_t B,
|
||
|
const padic_ctx_t ctx)
|
||
|
{
|
||
|
if (padic_mat_is_zero(A))
|
||
|
{
|
||
|
padic_mat_neg(C, B, ctx);
|
||
|
return;
|
||
|
}
|
||
|
if (padic_mat_is_zero(B))
|
||
|
{
|
||
|
padic_mat_set(C, A, ctx);
|
||
|
return;
|
||
|
}
|
||
|
if (FLINT_MIN(padic_mat_val(A), padic_mat_val(B)) >= padic_mat_prec(C))
|
||
|
{
|
||
|
padic_mat_zero(C);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (padic_mat_val(A) == padic_mat_val(B))
|
||
|
{
|
||
|
fmpz_mat_sub(padic_mat(C), padic_mat(A), padic_mat(B));
|
||
|
padic_mat_val(C) = padic_mat_val(A);
|
||
|
_padic_mat_canonicalise(C, ctx);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpz_t x;
|
||
|
fmpz_init(x);
|
||
|
|
||
|
if (padic_mat_val(A) < padic_mat_val(B))
|
||
|
{
|
||
|
fmpz_pow_ui(x, ctx->p, padic_mat_val(B) - padic_mat_val(A));
|
||
|
|
||
|
if (C == A)
|
||
|
{
|
||
|
fmpz_mat_scalar_submul_fmpz(padic_mat(C), padic_mat(B), x);
|
||
|
}
|
||
|
else if (C == B)
|
||
|
{
|
||
|
fmpz_neg(x, x);
|
||
|
fmpz_mat_scalar_mul_fmpz(padic_mat(C), padic_mat(B), x);
|
||
|
fmpz_mat_add(padic_mat(C), padic_mat(A), padic_mat(C));
|
||
|
padic_mat_val(C) = padic_mat_val(A);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpz_mat_set(padic_mat(C), padic_mat(A));
|
||
|
fmpz_mat_scalar_submul_fmpz(padic_mat(C), padic_mat(B), x);
|
||
|
padic_mat_val(C) = padic_mat_val(A);
|
||
|
}
|
||
|
}
|
||
|
else /* A->val > B->val */
|
||
|
{
|
||
|
fmpz_pow_ui(x, ctx->p, padic_mat_val(A) - padic_mat_val(B));
|
||
|
|
||
|
if (C == B)
|
||
|
{
|
||
|
fmpz_mat_scalar_submul_fmpz(padic_mat(C), padic_mat(A), x);
|
||
|
fmpz_mat_neg(padic_mat(C), padic_mat(C));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpz_mat_scalar_mul_fmpz(padic_mat(C), padic_mat(A), x);
|
||
|
fmpz_mat_sub(padic_mat(C), padic_mat(C), padic_mat(B));
|
||
|
padic_mat_val(C) = padic_mat_val(B);
|
||
|
}
|
||
|
}
|
||
|
fmpz_clear(x);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
void padic_mat_sub(padic_mat_t C, const padic_mat_t A, const padic_mat_t B,
|
||
|
const padic_ctx_t ctx)
|
||
|
{
|
||
|
if (padic_mat_is_empty(C))
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
_padic_mat_sub(C, A, B, ctx);
|
||
|
_padic_mat_reduce(C, ctx);
|
||
|
}
|
||
|
|