151 lines
4.6 KiB
C
151 lines
4.6 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2011 Fredrik Johansson
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include <math.h>
|
||
|
#include "arith.h"
|
||
|
|
||
|
static void
|
||
|
__bernoulli_number_vec_mod_p(mp_ptr res, mp_ptr tmp, const fmpz * den,
|
||
|
slong m, nmod_t mod)
|
||
|
{
|
||
|
mp_limb_t fac, c, t;
|
||
|
slong k;
|
||
|
|
||
|
/* x^2/(cosh(x)-1) = \sum_{k=0}^{\infty} 2(1-2k)/(2k)! B_2k x^(2k) */
|
||
|
|
||
|
/* Divide by factorials */
|
||
|
fac = n_factorial_mod2_preinv(2*m, mod.n, mod.ninv);
|
||
|
c = n_invmod(fac, mod.n);
|
||
|
for (k = m - 1; k >= 0; k--)
|
||
|
{
|
||
|
tmp[k] = c;
|
||
|
c = n_mulmod2_preinv(c, (2*k+1)*(2*k+2), mod.n, mod.ninv);
|
||
|
}
|
||
|
|
||
|
_nmod_poly_inv_series(res, tmp, m, mod);
|
||
|
res[0] = UWORD(1);
|
||
|
|
||
|
/* N_(2k) = -1 * D_(2k) * (2k)! / (2k-1) */
|
||
|
c = n_negmod(UWORD(1), mod.n);
|
||
|
for (k = 1; k < m; k++)
|
||
|
{
|
||
|
t = fmpz_fdiv_ui(den + 2*k, mod.n);
|
||
|
t = n_mulmod2_preinv(c, t, mod.n, mod.ninv);
|
||
|
res[k] = n_mulmod2_preinv(res[k], t, mod.n, mod.ninv);
|
||
|
c = n_mulmod2_preinv(c, 2*(k+1)*(2*k-1), mod.n, mod.ninv);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define CRT_MAX_RESOLUTION 16
|
||
|
|
||
|
void _arith_bernoulli_number_vec_multi_mod(fmpz * num, fmpz * den, slong n)
|
||
|
{
|
||
|
fmpz_comb_t comb[CRT_MAX_RESOLUTION];
|
||
|
fmpz_comb_temp_t temp[CRT_MAX_RESOLUTION];
|
||
|
mp_limb_t * primes;
|
||
|
mp_limb_t * residues;
|
||
|
mp_ptr * polys;
|
||
|
mp_ptr temppoly;
|
||
|
nmod_t mod;
|
||
|
slong i, j, k, m, num_primes, num_primes_k, resolution;
|
||
|
mp_bitcnt_t size, prime_bits;
|
||
|
|
||
|
if (n < 1)
|
||
|
return;
|
||
|
|
||
|
for (i = 0; i < n; i++)
|
||
|
arith_bernoulli_number_denom(den + i, i);
|
||
|
|
||
|
/* Number of nonzero entries (apart from B_1) */
|
||
|
m = (n + 1) / 2;
|
||
|
resolution = FLINT_MAX(1, FLINT_MIN(CRT_MAX_RESOLUTION, m / 16));
|
||
|
|
||
|
/* Note that the denominators must be accounted for */
|
||
|
size = arith_bernoulli_number_size(n) + _fmpz_vec_max_bits(den, n) + 2;
|
||
|
|
||
|
prime_bits = FLINT_BITS - 1;
|
||
|
num_primes = (size + prime_bits - 1) / prime_bits;
|
||
|
|
||
|
primes = flint_malloc(num_primes * sizeof(mp_limb_t));
|
||
|
residues = flint_malloc(num_primes * sizeof(mp_limb_t));
|
||
|
polys = flint_malloc(num_primes * sizeof(mp_ptr));
|
||
|
|
||
|
/* Compute Bernoulli numbers mod p */
|
||
|
primes[0] = n_nextprime(UWORD(1)<<prime_bits, 0);
|
||
|
for (k = 1; k < num_primes; k++)
|
||
|
primes[k] = n_nextprime(primes[k-1], 0);
|
||
|
temppoly = _nmod_vec_init(m);
|
||
|
for (k = 0; k < num_primes; k++)
|
||
|
{
|
||
|
polys[k] = _nmod_vec_init(m);
|
||
|
nmod_init(&mod, primes[k]);
|
||
|
__bernoulli_number_vec_mod_p(polys[k], temppoly, den, m, mod);
|
||
|
}
|
||
|
|
||
|
/* Init CRT comb */
|
||
|
for (i = 0; i < resolution; i++)
|
||
|
{
|
||
|
fmpz_comb_init(comb[i], primes, num_primes * (i + 1) / resolution);
|
||
|
fmpz_comb_temp_init(temp[i], comb[i]);
|
||
|
}
|
||
|
|
||
|
/* Trivial entries */
|
||
|
if (n > 1)
|
||
|
fmpz_set_si(num + 1, WORD(-1));
|
||
|
for (k = 3; k < n; k += 2)
|
||
|
fmpz_zero(num + k);
|
||
|
|
||
|
/* Reconstruction */
|
||
|
for (k = 0; k < n; k += 2)
|
||
|
{
|
||
|
size = arith_bernoulli_number_size(k) + fmpz_bits(den + k) + 2;
|
||
|
/* Use only as large a comb as needed */
|
||
|
num_primes_k = (size + prime_bits - 1) / prime_bits;
|
||
|
for (i = 0; i < resolution; i++)
|
||
|
{
|
||
|
if (comb[i]->num_primes >= num_primes_k)
|
||
|
break;
|
||
|
}
|
||
|
num_primes_k = comb[i]->num_primes;
|
||
|
for (j = 0; j < num_primes_k; j++)
|
||
|
residues[j] = polys[j][k / 2];
|
||
|
fmpz_multi_CRT_ui(num + k, residues, comb[i], temp[i], 1);
|
||
|
}
|
||
|
|
||
|
/* Cleanup */
|
||
|
for (k = 0; k < num_primes; k++)
|
||
|
_nmod_vec_clear(polys[k]);
|
||
|
_nmod_vec_clear(temppoly);
|
||
|
for (i = 0; i < resolution; i++)
|
||
|
{
|
||
|
fmpz_comb_temp_clear(temp[i]);
|
||
|
fmpz_comb_clear(comb[i]);
|
||
|
}
|
||
|
|
||
|
flint_free(primes);
|
||
|
flint_free(residues);
|
||
|
flint_free(polys);
|
||
|
}
|