pqc/external/flint-2.4.3/qadic/sqrt.c

851 lines
24 KiB
C
Raw Normal View History

2014-05-18 22:03:37 +00:00
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Sebastian Pancratz
******************************************************************************/
#include <assert.h>
#include "nmod_mat.h"
#include "fmpz_mod_poly.h"
#include "qadic.h"
/*
FILE DOCUMENTATION.
This file contains routines for computing square roots in
finite fields and Hensel lifting.
- _find_nonresidue()
- _artin_schreier_preimage()
- _fmpz_mod_poly_sqrtmod_p()
- _fmpz_mod_poly_sqrtmod_2()
- _qadic_sqrt_p()
- _qadic_sqrt()
- qadic_sqrt()
*/
/*
Sets \code{(rop,d)} to a non-residue in $\mathbf{F_q}$ for odd $p$
and $d \geq 2$.
*/
static void _find_nonresidue(fmpz *rop,
const fmpz *a, const slong *j, slong lena,
const fmpz_t p)
{
const slong d = j[lena - 1];
fmpz *w;
fmpz_t pm1, z;
slong i;
w = _fmpz_vec_init(2 * d - 1);
fmpz_init(pm1);
fmpz_init(z);
fmpz_sub_ui(pm1, p, 1);
fmpz_pow_ui(z, p, d);
fmpz_sub_ui(z, z, 1);
fmpz_fdiv_q_2exp(z, z, 1);
/*
Find a non-residue g;
uses stack-based depth first traversal starting from [0,...,0,1]
*/
_fmpz_vec_zero(rop, d);
fmpz_one(rop + (d - 1));
for (i = d; i > 0; )
{
if (i == d)
{
/* Consider this element, rop^{(q-1)/2} == -1 ? */
_qadic_pow(w, rop, d, z, a, j, lena, p);
if (fmpz_equal(w + 0, pm1) && _fmpz_vec_is_zero(w + 1, d - 1))
break;
/* Backtrace, find the next element */
for (i--; i >= 0 && fmpz_equal(rop + i, pm1); i--) ;
if (i >= 0)
{
fmpz_add_ui(rop + i, rop + i, 1);
i++;
}
}
else
{
_fmpz_vec_zero(rop + i, d - i);
i = d;
}
}
_fmpz_vec_clear(w, 2 * d - 1);
fmpz_clear(pm1);
fmpz_clear(z);
}
/*
Given an element $d$ as \code{(op,len)}, returns whether it has a
preimage $u$ under the Artin Schreier map $Y \mapsto Y^2 + Y$, and
if so sets \code{(rop,d)} to $u$.
In this case, the other preimage is given by $u + 1$. This
completes the set of preimages as the kernel of the Artin Schreier
map is $\mathbf{F}_2$.
The value of \code{(rop,d)}$ is undefined when the return value
is zero.
*/
int
_artin_schreier_preimage(fmpz *rop, const fmpz *op, slong len,
const fmpz *a, const slong *j, slong lena)
{
const slong d = j[lena - 1];
const fmpz_t p = {WORD(2)};
int ans;
fmpz *e, *f;
nmod_mat_t A;
slong i, k, rk, *P;
e = _fmpz_vec_init(d);
f = _fmpz_vec_init(2 * d - 1);
nmod_mat_init(A, d, d, 2);
P = flint_malloc(d * sizeof(slong));
/* Construct Artin Schreier matrix ------------------------------------- */
for (i = 0; i < d; i++)
{
fmpz_one(e + i);
_fmpz_poly_sqr(f, e, i+1);
_fmpz_poly_reduce(f, 2*(i+1)-1, a, j, lena);
fmpz_add_ui(f + i, f + i, 1);
_fmpz_vec_scalar_mod_fmpz(f, f, d, p);
for (k = 0; k < d; k++)
{
nmod_mat_entry(A, k, i) = (mp_limb_t) f[k];
}
fmpz_zero(e + i);
}
/* Perform LUP decomposition ------------------------------------------- */
/*
Write LU = PA and r = rank(A) so that U is in row echelon form
with only the top r rows non-zero, and L is lower unit triangular
truncated to r columns.
We know that Y^2 + Y = 0 if and only if Y is in the base field,
i.e., dim ker(A) = 1 and rank(A) = d-1.
Consider the linear system A x = b, which we can then write as
LU x = Pb, hence L y = Pb and U x = y.
*/
rk = nmod_mat_lu(P, A, 0);
assert(rk == d-1);
/* Solve for a preimage of (op,len) ------------------------------------ */
_fmpz_vec_zero(rop, d);
for (i = 0; i < d; i++)
{
rop[i] = P[i] < len ? op[P[i]] : 0;
for (k = 0; k < i; k++)
rop[i] ^= nmod_mat_entry(A, i, k) & rop[k];
}
ans = (rop[d-1] == 0);
if (ans)
{
slong c;
for (c = 0; c < d; c++)
if (nmod_mat_entry(A, c, c) == 0)
break;
for (k = d - 1; k > c; k--)
{
rop[k] = rop[k-1];
if ((rop[k]))
for (i = k - 2; i >= 0; i--)
rop[i] ^= nmod_mat_entry(A, i, k);
}
rop[k] = 0;
for (k--; k >= 0; k--)
{
if ((rop[k]))
for (i = k - 1; i >= 0; i--)
rop[i] ^= nmod_mat_entry(A, i, k);
}
}
/* Clean-up ------------------------------------------------------------ */
_fmpz_vec_clear(e, d);
_fmpz_vec_clear(f, 2 * d - 1);
nmod_mat_clear(A);
flint_free(P);
return ans;
}
/*
Returns whether the non-zero element \code{(op, len)} is a square,
and if so sets \code{(rop, 2 * d - 1)} to its square root.
Assumes that $p$ is an odd prime.
Assumes that $d \geq 1$.
Does not support aliasing.
*/
static int
_fmpz_mod_poly_sqrtmod_p(fmpz *rop, const fmpz *op, slong len,
const fmpz *a, const slong *j, slong lena,
const fmpz_t p)
{
const slong d = j[lena - 1];
int ans;
/*
When $q \equiv 3 \pmod{4}$...
A non-zero element $x$ is a square if and only if $x^{(q-1)/2} = 1$,
and in this case one of its square roots is given by $x^{(q+1)/4}$.
To avoid recomputation of powers of $x$, we compute $x^{(q-3)/4}$,
multiply this by $x$ to obtain the potential square root $x^{(q+1)/4}$,
and then combine these two powers to find $x^{(q-1)/2}$.
*/
if (fmpz_fdiv_ui(p, 4) == 3 && (d & WORD(1)))
{
fmpz_t z;
fmpz *v, *w;
fmpz_init(z);
v = _fmpz_vec_init(4 * d - 2);
w = v + (2 * d - 1);
fmpz_pow_ui(z, p, d);
fmpz_sub_ui(z, z, 3);
fmpz_fdiv_q_2exp(z, z, 2);
_qadic_pow(v, op, len, z, a, j, lena, p);
_fmpz_poly_mul(rop, v, d, op, len);
_fmpz_vec_zero(rop + d + len - 1, d - len);
_fmpz_mod_poly_reduce(rop, d + len - 1, a, j, lena, p);
_fmpz_poly_mul(w, rop, d, v, d);
_fmpz_mod_poly_reduce(w, 2 * d - 1, a, j, lena, p);
ans = fmpz_is_one(w + 0);
fmpz_clear(z);
_fmpz_vec_clear(v, 4 * d - 2);
}
/*
When $q \equiv 5 \pmod{8}$...
A non-zero element $x$ is a square if and only if $y = x^{(q-1)/4}$
is $\pm 1$. If $y = +1$, a square root is given by $x^{(q+3)/8}$,
otherwise it is $(2x) (4x)^{(q-5)/8}$.
We begin by computing $v = x^{(q-5)/8}$, $w = x v = x^{(q+3)/8}$
and $y = v w = x^{(q-1)/4}$. If $y = +1$ we return $w$, and if
$y = -1$ we return $2^{(q-1)/4} x^{(q+3)/8} = 2^{(q-1)/4} w$.
*/
else if (fmpz_fdiv_ui(p, 8) == 5 && (d & WORD(1)))
{
fmpz_t f, g, pm1;
fmpz *v; /* v = x^{(q-5)/8} */
fmpz *w; /* w = x^{(q+3)/8} */
fmpz *y; /* y = x^{(q-1)/4} */
fmpz_init(f);
fmpz_init(g);
fmpz_init(pm1);
fmpz_sub_ui(pm1, p, 1);
v = _fmpz_vec_init(2 * d - 1);
w = _fmpz_vec_init(2 * d - 1);
y = _fmpz_vec_init(2 * d - 1);
fmpz_pow_ui(g, p, d);
fmpz_sub_ui(g, g, 5);
fmpz_fdiv_q_2exp(g, g, 3);
_qadic_pow(v, op, len, g, a, j, lena, p);
_fmpz_poly_mul(w, v, d, op, len);
_fmpz_mod_poly_reduce(w, d + len - 1, a, j, lena, p);
_fmpz_poly_mul(y, v, d, w, d);
_fmpz_mod_poly_reduce(y, 2 * d - 1, a, j, lena, p);
if ((fmpz_is_one(y + 0) || fmpz_equal(y + 0, pm1)) /* q.r. */
&& _fmpz_vec_is_zero(y + 1, d - 1))
{
if (fmpz_is_one(y + 0))
{
_fmpz_vec_set(rop, w, d);
}
else
{
fmpz_t two = {WORD(2)};
fmpz_zero(g);
fmpz_pow_ui(g, p, d);
fmpz_sub_ui(g, g, 1);
fmpz_fdiv_q_2exp(g, g, 2);
_fmpz_vec_set(rop, v, d);
fmpz_powm(f, two, g, p);
_fmpz_mod_poly_scalar_mul_fmpz(rop, w, d, f, p);
}
_fmpz_vec_zero(rop + d, d - 1);
ans = 1;
}
else /* q.n.r. */
{
ans = 0;
}
fmpz_clear(f);
fmpz_clear(g);
fmpz_clear(pm1);
_fmpz_vec_clear(v, 2 * d - 1);
_fmpz_vec_clear(w, 2 * d - 1);
_fmpz_vec_clear(y, 2 * d - 1);
}
/*
General case for odd $q$...
TODO: Find a better way to integrate the check for square-ness
into the computation of a potential square root.
*/
else
{
slong i, s;
fmpz_t t, pm1, qm1, z;
fmpz *b, *g, *bpow, *gpow, *w;
fmpz_init(t);
fmpz_init(pm1);
fmpz_init(qm1);
fmpz_init(z);
fmpz_sub_ui(pm1, p, 1);
fmpz_pow_ui(qm1, p, d);
fmpz_sub_ui(qm1, qm1, 1);
b = _fmpz_vec_init(2 * d - 1);
g = _fmpz_vec_init(2 * d - 1);
bpow = _fmpz_vec_init(2 * d - 1);
gpow = _fmpz_vec_init(2 * d - 1);
w = _fmpz_vec_init(2 * d - 1);
/* Check whether op is a square, i.e. op^{(q-1}/2} == 1 */
fmpz_fdiv_q_2exp(z, qm1, 1);
_qadic_pow(w, op, len, z, a, j, lena, p);
ans = fmpz_is_one(w);
if (ans)
{
/* Find a non-residue g */
_find_nonresidue(g, a, j, lena, p);
/* Write q - 1 = 2^s t */
for (s = 0, fmpz_set(t, qm1); fmpz_is_even(t); s++)
fmpz_fdiv_q_2exp(t, t, 1);
/* Set g = g^t */
_qadic_pow(w, g, d, t, a, j, lena, p);
_fmpz_vec_set(g, w, d);
/* Set rop = op^{(t+1)/2} */
fmpz_add_ui(z, t, 1);
fmpz_fdiv_q_2exp(z, z, 1);
_qadic_pow(rop, op, len, z, a, j, lena, p);
/* Set b = op^t */
_qadic_pow(b, op, len, t, a, j, lena, p);
while (!_fmpz_poly_is_one(b, d))
{
slong k;
_fmpz_vec_set(bpow, b, d);
for (k = 1; (k < s) && !_fmpz_poly_is_one(bpow, d); k++)
{
_fmpz_poly_sqr(w, bpow, d);
_fmpz_mod_poly_reduce(w, 2 * d - 1, a, j, lena, p);
_fmpz_vec_scalar_mod_fmpz(bpow, w, d, p);
}
_fmpz_vec_set(gpow, g, d);
for (i = 1; i < s - k; i++)
{
_fmpz_poly_sqr(w, gpow, d);
_fmpz_mod_poly_reduce(w, 2 * d - 1, a, j, lena, p);
_fmpz_vec_scalar_mod_fmpz(gpow, w, d, p);
}
_fmpz_poly_mul(w, rop, d, gpow, d);
_fmpz_mod_poly_reduce(w, 2 * d - 1, a, j, lena, p);
_fmpz_vec_scalar_mod_fmpz(rop, w, d, p);
_fmpz_poly_sqr(w, gpow, d);
_fmpz_mod_poly_reduce(w, 2 * d - 1, a, j, lena, p);
_fmpz_vec_scalar_mod_fmpz(gpow, w, d, p);
_fmpz_poly_mul(w, b, d, gpow, d);
_fmpz_mod_poly_reduce(w, 2 * d - 1, a, j, lena, p);
_fmpz_vec_scalar_mod_fmpz(b, w, d, p);
s = k;
}
}
fmpz_clear(t);
fmpz_clear(pm1);
fmpz_clear(qm1);
fmpz_clear(z);
_fmpz_vec_clear(b, 2 * d - 1);
_fmpz_vec_clear(g, 2 * d - 1);
_fmpz_vec_clear(bpow, 2 * d - 1);
_fmpz_vec_clear(gpow, 2 * d - 1);
_fmpz_vec_clear(w, 2 * d - 1);
}
return ans;
}
/*
Sets \code{(rop, 2 * d - 1)} to the square root of
\code{(op, len)}.
Note that the group of units of $\mathbf{F}_q$ is cyclic of order $q - 1$,
which is odd if $p = 2$. We have $x^{q-1} = 1$ for every non-zero $x$, so
$x^q = x$ for every $x$ and $u = x^{q/2}$ satisfies $u^2 = x$.
Assumes that $d \geq 1$.
*/
static void
_fmpz_mod_poly_sqrtmod_2(fmpz *rop, const fmpz *op, slong len,
const fmpz *a, const slong *j, slong lena)
{
const fmpz_t p = {WORD(2)};
const slong d = j[lena - 1];
fmpz_t z;
fmpz_init(z);
fmpz_setbit(z, d - 1);
_qadic_pow(rop, op, len, z, a, j, lena, p);
fmpz_clear(z);
}
/*
Returns whether \code{(op, len)} is a square, and if so
sets \code{(rop, 2 * d - 1)} to a square root mod $p^N$.
Assumes that \code{(op, len)} has valuation $0$.
*/
static int
_qadic_sqrt_p(fmpz *rop, const fmpz *op, slong len,
const fmpz *a, const slong *j, slong lena,
const fmpz_t p, slong N)
{
const slong d = j[lena - 1];
int ans;
if (N == 1)
{
ans = _fmpz_mod_poly_sqrtmod_p(rop, op, len, a, j, lena, p);
return ans;
}
else
{
slong *e, i, k, n;
fmpz *pow, *u;
fmpz *r, *s, *t, *f;
n = FLINT_CLOG2(N) + 1;
/* Compute sequence of exponents */
e = flint_malloc(n * sizeof(slong));
for (e[i = 0] = N; e[i] > 1; i++)
e[i + 1] = (e[i] + 1) / 2;
pow = _fmpz_vec_init(n);
u = _fmpz_vec_init(len * n);
r = _fmpz_vec_init(2 * d - 1);
s = _fmpz_vec_init(2 * d - 1);
t = _fmpz_vec_init(2 * d - 1);
f = _fmpz_vec_init(d + 1);
/* Compute powers of p */
{
fmpz_one(t);
fmpz_set(pow + i, p);
}
for (i--; i >= 1; i--)
{
if (e[i] & WORD(1))
{
fmpz_mul(pow + i, t, pow + (i + 1));
fmpz_mul(t, t, t);
}
else
{
fmpz_mul(t, t, pow + (i + 1));
fmpz_mul(pow + i, pow + (i + 1), pow + (i + 1));
}
}
{
if (e[i] & WORD(1))
fmpz_mul(pow + i, t, pow + (i + 1));
else
fmpz_mul(pow + i, pow + (i + 1), pow + (i + 1));
}
/* Compute reduced units */
{
_fmpz_vec_scalar_mod_fmpz(u + 0 * len, op, len, pow + 0);
}
for (i = 1; i < n; i++)
{
_fmpz_vec_scalar_mod_fmpz(u + i * len, u + (i - 1) * len, len, pow + i);
}
/* Run Newton iteration */
i = n - 1;
{
ans = _fmpz_mod_poly_sqrtmod_p(t, u + i * len, len, a, j, lena, p);
if (!ans)
goto exit;
/* Dense copy of f, used for inversion */
for (k = 0; k < lena; k++)
fmpz_set(f + j[k], a + k);
_fmpz_mod_poly_invmod(rop, t, d, f, d + 1, p);
}
for (i--; i >= 1; i--) /* z := z - z (a z^2 - 1) / 2 */
{
_fmpz_poly_sqr(s, rop, d);
_fmpz_poly_reduce(s, 2 * d - 1, a, j, lena);
_fmpz_poly_mul(t, s, d, u + i * len, len);
_fmpz_poly_reduce(t, d + len - 1, a, j, lena);
fmpz_sub_ui(t, t, 1);
for (k = 0; k < d; k++)
{
if (fmpz_is_odd(t + k))
fmpz_add(t + k, t + k, pow + i);
fmpz_fdiv_q_2exp(t + k, t + k, 1);
}
_fmpz_poly_mul(s, t, d, rop, d);
_fmpz_poly_reduce(s, 2 * d - 1, a, j, lena);
_fmpz_poly_sub(rop, rop, d, s, d);
_fmpz_vec_scalar_mod_fmpz(rop, rop, d, pow + i);
}
{
_fmpz_poly_mul(s, rop, d, u + 1 * len, len);
_fmpz_poly_reduce(s, d + len - 1, a, j, lena);
_fmpz_poly_sqr(t, s, d);
_fmpz_poly_reduce(t, 2 * d - 1, a, j, lena);
_fmpz_poly_sub(t, u + 0 * len, len, t, d);
for (k = 0; k < d; k++)
{
if (fmpz_is_odd(t + k))
fmpz_add(t + k, t + k, pow + 0);
fmpz_fdiv_q_2exp(t + k, t + k, 1);
}
_fmpz_poly_mul(r, rop, d, t, d);
_fmpz_poly_reduce(r, 2 * d - 1, a, j, lena);
_fmpz_poly_add(rop, r, d, s, d);
_fmpz_vec_scalar_mod_fmpz(rop, rop, d, pow + 0);
}
exit:
_fmpz_vec_clear(pow, n);
_fmpz_vec_clear(u, len * n);
_fmpz_vec_clear(r, 2 * d - 1);
_fmpz_vec_clear(s, 2 * d - 1);
_fmpz_vec_clear(t, 2 * d - 1);
_fmpz_vec_clear(f, d + 1);
flint_free(e);
return ans;
}
}
/*
Returns whether \code{(op, len)} is a square, and if so
sets \code{(rop, 2 * d - 1)} to a square root mod $2^N$.
Assumes that \code{(op, len)} has valuation $0$.
*/
static int
_qadic_sqrt_2(fmpz *rop, const fmpz *op, slong len,
const fmpz *a, const slong *j, slong lena, slong N)
{
int ans;
const slong d = j[lena - 1];
const fmpz_t p = {WORD(2)};
fmpz *g, *r, *s, *t;
slong i;
g = _fmpz_vec_init(2 * d - 1);
r = _fmpz_vec_init(2 * d - 1);
s = _fmpz_vec_init(2 * d - 1);
t = _fmpz_vec_init(2 * d - 1);
/* Compute r = 1/op (mod 8) */
_qadic_inv(r, op, len, a, j, lena, p, 3);
/* Compute s = invsqrt(op) (mod 2) */
_fmpz_vec_scalar_fdiv_r_2exp(t, r, d, 1);
_fmpz_mod_poly_sqrtmod_2(s, r, d, a, j, lena);
/* Compute t = (1/op - s^2) / 4 (mod 2) if that makes sense */
_fmpz_poly_sqr(t, s, d);
_fmpz_poly_reduce(t, 2*d - 1, a, j, lena);
_fmpz_vec_sub(t, r, t, d);
_fmpz_vec_zero(rop, 2 * d - 1);
ans = 1;
for (i = 0; i < d; i++)
{
if (fmpz_val2(t + i) == 1)
ans = 0;
}
if (ans) {
_fmpz_vec_scalar_fdiv_q_2exp(t, t, d, 2);
_fmpz_vec_scalar_fdiv_r_2exp(t, t, d, 1);
/* Check whether X^2 + s X = t (mod 2) has a solution */
/*
u = (op,len) is a square in Zq iff it is a square modulo 8,
which is the case iff X^2 + s X + t == 0 (mod 2) is soluble.
Let g be t/s^2. Then the above quadratic is soluble iff
Y^2 + Y + d = 0 is soluble.
We can observe that 1/s^2 = op (mod 2).
*/
_fmpz_vec_scalar_fdiv_r_2exp(r, op, len, 1);
_fmpz_poly_mul(g, t, d, r, len);
_fmpz_mod_poly_reduce(g, 2 * d - 1, a, j, lena, p);
ans = _artin_schreier_preimage(r, g, d, a, j, lena);
if (ans)
{
if (N == 1)
{
_fmpz_mod_poly_sqrtmod_2(rop, op, len, a, j, lena);
}
else
{
/* Set t = r s, a root of X^2 + s X = t (mod 2) */
_fmpz_poly_mul(t, r, d, s, d);
_fmpz_mod_poly_reduce(t, 2 * d - 1, a, j, lena, p);
/* Now s + 2t is an invsqrt of (op, len) to precision 4. */
_fmpz_vec_scalar_addmul_si(s, t, d, 2);
if (N == 2)
{
_qadic_inv(rop, s, d, a, j, lena, p, 2);
}
else /* N >= 3 */
{
slong *e, n;
fmpz *u;
n = FLINT_CLOG2(N - 1) + 1;
/* Compute sequence of exponents */
e = flint_malloc(n * sizeof(slong));
for (e[i = 0] = N; e[i] > 2; i++)
e[i + 1] = e[i] / 2 + 1;
u = _fmpz_vec_init(len * n);
/* Compute reduced units */
{
_fmpz_vec_scalar_fdiv_r_2exp(u + 0 * len, op, len, e[0]);
}
for (i = 1; i < n; i++)
{
_fmpz_vec_scalar_fdiv_r_2exp(u + i * len, u + (i - 1) * len, len, e[i] + 1);
}
/* Run Newton iteration */
{
_fmpz_vec_set(rop, s, d);
}
for (i = n - 2; i >= 1; i--) /* z := z - z (a z^2 - 1) / 2 */
{
_fmpz_poly_sqr(s, rop, d);
_fmpz_poly_reduce(s, 2 * d - 1, a, j, lena);
_fmpz_poly_mul(t, s, d, u + i * len, len);
_fmpz_poly_reduce(t, d + len - 1, a, j, lena);
fmpz_sub_ui(t, t, 1);
_fmpz_vec_scalar_fdiv_q_2exp(t, t, d, 1);
_fmpz_poly_mul(s, t, d, rop, d);
_fmpz_poly_reduce(s, 2 * d - 1, a, j, lena);
_fmpz_poly_sub(rop, rop, d, s, d);
_fmpz_vec_scalar_fdiv_r_2exp(rop, rop, d, e[i]);
}
/* z := a z + z (a - (a z)^2) / 2 */
{
_fmpz_poly_mul(s, rop, d, u + len, len);
_fmpz_poly_reduce(s, d + len - 1, a, j, lena);
_fmpz_poly_sqr(t, s, d);
_fmpz_poly_reduce(t, 2 * d - 1, a, j, lena);
_fmpz_poly_sub(t, u + 0 * len, len, t, d);
_fmpz_vec_scalar_fdiv_q_2exp(t, t, d, 1);
_fmpz_poly_mul(r, rop, d, t, d);
_fmpz_poly_reduce(r, 2 * d - 1, a, j, lena);
_fmpz_poly_add(rop, r, d, s, d);
_fmpz_vec_scalar_fdiv_r_2exp(rop, rop, d, e[0]);
}
_fmpz_vec_clear(u, len * n);
flint_free(e);
}
}
}
}
_fmpz_vec_clear(g, 2 * d - 1);
_fmpz_vec_clear(r, 2 * d - 1);
_fmpz_vec_clear(s, 2 * d - 1);
_fmpz_vec_clear(t, 2 * d - 1);
return ans;
}
/*
Returns whether \code{(op, len)} is a square, and if so
sets \code{(rop, 2 * d - 1)} to a square root, reduced
modulo $2^N$.
Assumes that \code{(op, len)} has valuation $0$.
*/
int _qadic_sqrt(fmpz *rop, const fmpz *op, slong len,
const fmpz *a, const slong *j, slong lena,
const fmpz_t p, slong N)
{
if (*p == WORD(2))
{
return _qadic_sqrt_2(rop, op, len, a, j, lena, N);
}
else
{
return _qadic_sqrt_p(rop, op, len, a, j, lena, p, N);
}
}
int qadic_sqrt(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)
{
const fmpz *p = (&ctx->pctx)->p;
const slong d = qadic_ctx_degree(ctx);
const slong N = qadic_prec(rop);
fmpz *t;
int ans;
if (qadic_is_zero(op))
{
qadic_zero(rop);
return 1;
}
if (op->val & WORD(1))
{
return 0;
}
rop->val = op->val / 2;
/*
FIXME: In this case, we don't actually
check whether the element is a square!
*/
if (rop->val >= N)
{
qadic_zero(rop);
return 1;
}
if (rop == op)
{
t = _fmpz_vec_init(2 * d - 1);
}
else
{
padic_poly_fit_length(rop, 2 * d - 1);
t = rop->coeffs;
}
ans = _qadic_sqrt(t, op->coeffs, op->length, ctx->a, ctx->j, ctx->len, p, N - rop->val);
if (rop == op)
{
_fmpz_vec_clear(rop->coeffs, rop->alloc);
rop->coeffs = t;
rop->alloc = 2 * d - 1;
rop->length = d;
}
_padic_poly_set_length(rop, d);
_padic_poly_normalise(rop);
if (padic_poly_length(rop) == 0)
padic_poly_val(rop) = 0;
return ans;
}