pqc/external/flint-2.4.3/fmpz_poly/gcd_modular.c

347 lines
10 KiB
C
Raw Normal View History

2014-05-18 22:03:37 +00:00
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2011 William Hart
******************************************************************************/
#include <gmp.h>
#include "flint.h"
#include "fmpz.h"
#include "fmpz_vec.h"
#include "fmpz_poly.h"
#include "mpn_extras.h"
void _fmpz_poly_gcd_modular(fmpz * res, const fmpz * poly1, slong len1,
const fmpz * poly2, slong len2)
{
mp_bitcnt_t bits1, bits2, nb1, nb2, bits_small, pbits, curr_bits = 0, new_bits;
fmpz_t ac, bc, hc, d, g, l, eval_A, eval_B, eval_GCD, modulus;
fmpz * A, * B, * Q, * lead_A, * lead_B;
mp_ptr a, b, h;
mp_limb_t p, h_inv, g_mod;
nmod_t mod;
slong i, n, n0, unlucky, hlen, bound;
int g_pm1;
fmpz_init(ac);
fmpz_init(bc);
fmpz_init(d);
/* compute gcd of content of poly1 and poly2 */
_fmpz_vec_content(ac, poly1, len1);
_fmpz_vec_content(bc, poly2, len2);
fmpz_gcd(d, ac, bc);
/* special case, one of the polys is a constant */
if (len2 == 1) /* if len1 == 1 then so does len2 */
{
fmpz_set(res, d);
fmpz_clear(ac);
fmpz_clear(bc);
fmpz_clear(d);
return;
}
/* divide poly1 and poly2 by their content */
A = _fmpz_vec_init(len1);
B = _fmpz_vec_init(len2);
_fmpz_vec_scalar_divexact_fmpz(A, poly1, len1, ac);
_fmpz_vec_scalar_divexact_fmpz(B, poly2, len2, bc);
fmpz_clear(ac);
fmpz_clear(bc);
/* get bound on size of gcd coefficients */
lead_A = A + len1 - 1;
lead_B = B + len2 - 1;
bits1 = _fmpz_vec_max_bits(A, len1); bits1 = FLINT_ABS(bits1);
bits2 = _fmpz_vec_max_bits(B, len2); bits2 = FLINT_ABS(bits2);
fmpz_init(l);
if (len1 < 64 && len2 < 64) /* compute the squares of the 2-norms */
{
fmpz_set_ui(l, 0);
for (i = 0; i < len1; i++)
fmpz_addmul(l, A + i, A + i);
nb1 = fmpz_bits(l);
fmpz_set_ui(l, 0);
for (i = 0; i < len2; i++)
fmpz_addmul(l, B + i, B + i);
nb2 = fmpz_bits(l);
} else /* approximate to save time */
{
nb1 = 2*bits1 + FLINT_BIT_COUNT(len1);
nb2 = 2*bits2 + FLINT_BIT_COUNT(len2);
}
/* get gcd of leading coefficients */
fmpz_init(g);
fmpz_gcd(g, lead_A, lead_B);
fmpz_mul(l, lead_A, lead_B);
g_pm1 = fmpz_is_pm1(g);
/* evaluate -A at -1 */
fmpz_init(eval_A);
for (i = 0; i < len1; i++)
{
if (i & 1) fmpz_add(eval_A, eval_A, A + i);
else fmpz_sub(eval_A, eval_A, A + i);
}
/* evaluate -B at -1 */
fmpz_init(eval_B);
for (i = 0; i < len2; i++)
{
if (i & 1) fmpz_add(eval_B, eval_B, B + i);
else fmpz_sub(eval_B, eval_B, B + i);
}
/* compute the gcd of eval(-A, -1) and eval(-B, -1) */
fmpz_init(eval_GCD);
fmpz_gcd(eval_GCD, eval_A, eval_B);
/* compute a heuristic bound after which we should begin checking if we're done */
bits_small = FLINT_MAX(fmpz_bits(eval_GCD), fmpz_bits(g));
if (bits_small < WORD(2)) bits_small = 2;
fmpz_clear(eval_GCD);
fmpz_clear(eval_A);
fmpz_clear(eval_B);
/* set size of first prime */
pbits = FLINT_BITS - 1;
p = (UWORD(1)<<pbits);
fmpz_init(modulus);
fmpz_init(hc);
Q = _fmpz_vec_init(len1);
/* make space for polynomials mod p */
a = _nmod_vec_init(len1);
b = _nmod_vec_init(len2);
h = _nmod_vec_init(len2);
/* zero entire output */
_fmpz_vec_zero(res, len2);
n = len2;
/* current bound on length of result
the bound we use is from section 6 of
http://cs.nyu.edu/~yap/book/alge/ftpSite/l4.ps.gz
*/
n0 = len1 - 1;
bound = (n0 + 3)*FLINT_MAX(nb1, nb2) + (n0 + 1); /* initialise bound */
unlucky = 0;
for (;;)
{
/* get new prime and initialise modulus */
p = n_nextprime(p, 0);
if (fmpz_fdiv_ui(l, p) == 0)
{
unlucky += pbits;
continue;
}
nmod_init(&mod, p);
/* reduce polynomials modulo p */
_fmpz_vec_get_nmod_vec(a, A, len1, mod);
_fmpz_vec_get_nmod_vec(b, B, len2, mod);
/* compute gcd over Z/pZ */
hlen = _nmod_poly_gcd(h, a, len1, b, len2, mod);
if (hlen == 1) /* gcd is 1 */
{
fmpz_one(res);
_fmpz_vec_zero(res + 1, len2 - 1);
break;
}
if (hlen > n + 1) /* discard this prime */
{
unlucky += pbits;
continue;
}
/* scale new polynomial mod p appropriately */
if (g_pm1) _nmod_poly_make_monic(h, h, hlen, mod);
else
{
h_inv = n_invmod(h[hlen - 1], mod.n);
g_mod = fmpz_fdiv_ui(g, mod.n);
h_inv = n_mulmod2_preinv(h_inv, g_mod, mod.n, mod.ninv);
_nmod_vec_scalar_mul_nmod(h, h, hlen, h_inv, mod);
}
if (hlen <= n) /* we have a new bound on size of result */
{
unlucky += fmpz_bits(modulus);
_fmpz_vec_set_nmod_vec(res, h, hlen, mod);
_fmpz_vec_zero(res + hlen, len2 - hlen);
if (g_pm1)
{
/* are we done? */
if (_fmpz_poly_divides(Q, B, len2, res, hlen) &&
_fmpz_poly_divides(Q, A, len1, res, hlen))
break;
}
else
{
if (pbits + unlucky >= bound) /* if we reach the bound with one prime */
{
_fmpz_vec_content(hc, res, hlen);
/* divide by content */
_fmpz_vec_scalar_divexact_fmpz(res, res, hlen, hc);
break;
}
if (pbits >= bits_small) /* if one prime is already big enough to check */
{
/* divide by content */
_fmpz_vec_content(hc, res, hlen);
/* correct sign of leading term */
if (fmpz_sgn(res + hlen - 1) < 0)
fmpz_neg(hc, hc);
_fmpz_vec_scalar_divexact_fmpz(res, res, hlen, hc);
/* are we done? */
if (_fmpz_poly_divides(Q, B, len2, res, hlen) &&
_fmpz_poly_divides(Q, A, len1, res, hlen))
break;
/* no, so multiply by content again */
_fmpz_vec_scalar_mul_fmpz(res, res, hlen, hc);
}
}
curr_bits = FLINT_ABS(_fmpz_vec_max_bits(res, hlen));
fmpz_set_ui(modulus, p);
n = hlen - 1; /* if we reach this we have a new bound on length of result */
continue;
}
_fmpz_poly_CRT_ui(res, res, hlen, modulus, h, hlen, mod.n, mod.ninv, 1);
fmpz_mul_ui(modulus, modulus, mod.n);
new_bits = _fmpz_vec_max_bits(res, hlen);
new_bits = FLINT_ABS(new_bits);
if (new_bits == curr_bits || fmpz_bits(modulus) >= bits_small)
{
if (!g_pm1)
{
_fmpz_vec_content(hc, res, hlen);
/* correct sign of leading term */
if (fmpz_sgn(res + hlen - 1) < 0)
fmpz_neg(hc, hc);
/* divide by content */
_fmpz_vec_scalar_divexact_fmpz(res, res, hlen, hc);
}
if (fmpz_bits(modulus) + unlucky >= bound)
break;
/* are we done? */
if (_fmpz_poly_divides(Q, B, len2, res, hlen) &&
_fmpz_poly_divides(Q, A, len1, res, hlen))
break;
if (!g_pm1)
{
/* no, so multiply by content again */
_fmpz_vec_scalar_mul_fmpz(res, res, hlen, hc);
}
}
curr_bits = new_bits;
}
fmpz_clear(modulus);
fmpz_clear(g);
fmpz_clear(l);
fmpz_clear(hc);
_nmod_vec_clear(a);
_nmod_vec_clear(b);
_nmod_vec_clear(h);
/* finally multiply by content */
_fmpz_vec_scalar_mul_fmpz(res, res, hlen, d);
fmpz_clear(d);
_fmpz_vec_clear(A, len1);
_fmpz_vec_clear(B, len2);
_fmpz_vec_clear(Q, len1);
}
void
fmpz_poly_gcd_modular(fmpz_poly_t res, const fmpz_poly_t poly1,
const fmpz_poly_t poly2)
{
if (poly1->length < poly2->length)
{
fmpz_poly_gcd_modular(res, poly2, poly1);
}
else /* len1 >= len2 >= 0 */
{
const slong len1 = poly1->length;
const slong len2 = poly2->length;
if (len1 == 0) /* len1 = len2 = 0 */
{
fmpz_poly_zero(res);
}
else if (len2 == 0) /* len1 > len2 = 0 */
{
if (fmpz_sgn(poly1->coeffs + (len1 - 1)) > 0)
fmpz_poly_set(res, poly1);
else
fmpz_poly_neg(res, poly1);
}
else /* len1 >= len2 >= 1 */
{
/* underscore function automatically aliases */
fmpz_poly_fit_length(res, len2);
_fmpz_poly_gcd_modular(res->coeffs, poly1->coeffs, len1,
poly2->coeffs, len2);
_fmpz_poly_set_length(res, len2);
_fmpz_poly_normalise(res);
}
}
}