pqc/external/flint-2.4.3/flintxx/test/t-nmod_matxx.cpp

328 lines
9.9 KiB
C++
Raw Normal View History

2014-05-18 22:03:37 +00:00
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Tom Bachmann
******************************************************************************/
#include <iostream>
#include "nmod_matxx.h"
#include "flintxx/test/helpers.h"
using namespace flint;
void
test_init()
{
mp_limb_t M = 1039;
nmod_matxx A(3, 4, M);
nmodxx_ctx_srcref ctx = A.estimate_ctx();
tassert(ctx.n() == M);
tassert((A + A).modulus() == M);
tassert(A.rows() == 3 && A.cols() == 4);
tassert(A.at(0, 0) == nmodxx::red(0, ctx));
A.at(0, 0) = nmodxx::red(1, ctx);
nmod_matxx B(A);
tassert(A == B);
tassert(B.rows() == 3 && B.cols() == 4);
tassert(B.at(0, 0) == nmodxx::red(1, ctx));
B.at(0, 0) = nmodxx::red(0, ctx);
tassert(A.at(0, 0) == nmodxx::red(1, ctx));
tassert(A != B);
B = A;
tassert(A == B);
A.set_zero();
tassert(A.is_zero() && A == nmod_matxx::zero(A.rows(), A.cols(), A.modulus()));
}
template<class Expr>
bool has_explicit_temporaries(const Expr&)
{
return Expr::ev_traits_t::rule_t::temporaries_t::len != 0;
}
void
test_arithmetic()
{
mp_limb_t M = 1039;
nmod_matxx A(10, 10, M);
nmod_matxx v(10, 1, M);
nmodxx_ctx_srcref ctx = A.estimate_ctx();
for(unsigned i = 0;i < 10;++i)
v.at(i, 0) = nmodxx::red(i, ctx);
nmodxx two = nmodxx::red(2, ctx);
tassert(transpose(v).rows() == 1);
tassert(v.transpose().cols() == 10);
tassert((two*v).rows() == 10);
tassert((v*two).rows() == 10);
tassert((v*transpose(v)).rows() == 10 && (v*transpose(v)).cols() == 10);
tassert(!has_explicit_temporaries(trace(transpose(v))));
tassert(!has_explicit_temporaries(trace(A + v*transpose(v))));
tassert(!has_explicit_temporaries(A + v*transpose(v)));
tassert(!has_explicit_temporaries(trace((v*transpose(v) + A))));
tassert(!has_explicit_temporaries(trace(v*transpose(v) + v*transpose(v))));
tassert(!has_explicit_temporaries(v*transpose(v) + v*transpose(v)));
tassert(trace(transpose(v)) == nmodxx::red(0, ctx));
tassert(trace(A + v*transpose(v)) == nmodxx::red(285, ctx));
tassert(trace(v*transpose(v) + A) == nmodxx::red(285, ctx));
tassert(trace(v*transpose(v) + v*transpose(v)) == nmodxx::red(2*285, ctx));
tassert(trace((A+A)*(nmodxx::red(1, ctx) + nmodxx::red(1, ctx)))
== nmodxx::red(0, ctx));
for(unsigned i = 0;i < 10; ++i)
for(unsigned j = 0; j < 10; ++j)
A.at(i, j) = nmodxx::red(i*j, ctx);
tassert(A == v*transpose(v));
tassert(A != transpose(v)*v);
A.at(0, 0) = nmodxx::red(15, ctx);
tassert(A != v*transpose(v));
A.at(0, 0) = nmodxx::red(0, ctx);
for(unsigned i = 0;i < 10; ++i)
for(unsigned j = 0; j < 10; ++j)
A.at(i, j) *= two;
tassert(A == v*transpose(v) + v*transpose(v));
tassert(A - v*transpose(v) == v*transpose(v));
tassert(((-A) + A).is_zero());
tassert((A + A).at(0, 0) == A.at(0, 0) + A.at(0, 0));
}
void
test_functions()
{
mp_limb_t M = 1031;
nmod_matxx A(2, 3, M), B(2, 2, M), empty(0, 15, M);
nmodxx_ctx_srcref ctx = A.estimate_ctx();
B.at(0, 0) = nmodxx::red(1, ctx);
tassert(A.is_zero() && !A.is_empty() && !A.is_square());
tassert(!B.is_zero() == B.is_square());
tassert(empty.is_zero() && empty.is_empty());
// transpose tested in arithmetic
// mul tested in arithmetic
// trace tested in arithmetic
frandxx rand;
A.set_randtest(rand);
B.set_randtest(rand);
tassert(B*A == B.mul_classical(A));
tassert(B*A == B.mul_strassen(A));
B.set_randrank(rand, 1);
tassert(B.det() == nmodxx::red(0, ctx));
B.set_randrank(rand, 2);
tassert(B.det() != nmodxx::red(0, ctx));
B.set_randrank(rand, 1);
assert_exception(B.inv().evaluate());
B.set_randrank(rand, 2);
nmod_matxx eye(2, 2, M);
eye.at(0, 0) = nmodxx::red(1, ctx);eye.at(1, 1) = nmodxx::red(1, ctx);
tassert(B.inv() * B == eye);
A.set_randrank(rand, 2);
tassert(rank(A) == 2);
B.set_randtril(rand, false);
tassert(B*B.solve_tril(A, false) == A);
tassert(B.solve_tril_classical(A, false) == B.solve_tril(A, false));
tassert(B.solve_tril_recursive(A, false) == B.solve_tril(A, false));
B.set_randtriu(rand, true);
tassert(B*B.solve_triu(A, true) == A);
tassert(B.solve_triu_classical(A, true) == B.solve_triu(A, true));
tassert(B.solve_triu_recursive(A, true) == B.solve_triu(A, true));
B.set_randrank(rand, 2);
tassert(B*B.solve(A) == A);
nmod_vecxx X(2, ctx); X[0] = nmodxx::red(1, ctx); X[1] = nmodxx::red(2, ctx);
X = B.solve(X);
tassert(B.at(0, 0)*X[0] + B.at(0, 1) * X[1] == nmodxx::red(1, ctx));
tassert(B.at(1, 0)*X[0] + B.at(1, 1) * X[1] == nmodxx::red(2, ctx));
B.set_randrank(rand, 1);
assert_exception(B.solve(A).evaluate());
assert_exception(B.solve(X).evaluate());
slong nullity;nmod_matxx C(3, 3, M);
tassert(nullspace(A).get<1>().rows() == 3);
tassert(nullspace(A).get<1>().cols() == 3);
ltupleref(nullity, C) = nullspace(A);
tassert(nullity == 3 - rank(A));
tassert(C.rank() == nullity);
tassert((A*C).is_zero());
A.set_rref();
tassert(A.at(1, 0) == nmodxx::red(0, ctx));
}
void
test_randomisation()
{
frandxx rand;
mp_limb_t M = 1031;
nmod_matxx A(2, 2, M);
nmodxx_ctx_srcref ctx = A.estimate_ctx();
// not really anything we can test about these ...
// just make sure the call works
A.set_randtest(rand);
A.set_randfull(rand);
nmod_vecxx v(2, ctx);v[0] = nmodxx::red(5, ctx);v[1] = nmodxx::red(7, ctx);
A.set_randpermdiag(rand, v);
tassert(A.at(0, 0) + A.at(0, 1) + A.at(1, 0) + A.at(1, 1)
== nmodxx::red(5 + 7, ctx));
A.set_randrank(rand, 1);
tassert(A.rank() == 1);
A.apply_randops(rand, 17);
tassert(A.rank() == 1);
A.set_randtril(rand, true);
tassert(A.at(0, 0) == nmodxx::red(1, ctx));
tassert(A.at(1, 1) == nmodxx::red(1, ctx));
tassert(A.at(0, 1) == nmodxx::red(0, ctx));
A.set_randtriu(rand, false);
tassert(A.at(1, 0) == nmodxx::red(0, ctx));
frandxx rand2, rand3;
nmod_matxx B(2, 2, M);
B.set_randtest(rand2);
tassert(B == nmod_matxx::randtest(2, 2, M, rand3));
B.set_randfull(rand2);
tassert(B == nmod_matxx::randfull(2, 2, M, rand3));
B.set_randrank(rand2, 1);
tassert(B == nmod_matxx::randrank(2, 2, M, rand3, 1));
B.set_randtril(rand2, false);
tassert(B == nmod_matxx::randtril(2, 2, M, rand3, false));
B.set_randtriu(rand2, false);
tassert(B == nmod_matxx::randtriu(2, 2, M, rand3, false));
B.set_randpermdiag(rand2, v);
tassert(B == nmod_matxx::randpermdiag(2, 2, M, rand3, v));
}
void
test_reduction_reconstruction()
{
std::vector<mp_limb_t> primes;
primes.push_back(1031);
primes.push_back(1033);
primes.push_back(1039);
mp_limb_t M = primes[0];
frandxx rand;
fmpz_matxx A(5, 7);A.set_randtest(rand, 8);
nmod_matxx Ap = nmod_matxx::reduce(A, M);
nmodxx_ctx_srcref ctx = Ap.estimate_ctx();
tassert(Ap.rows() == A.rows() && Ap.cols() == A.cols());
for(slong i = 0;i < A.rows();++i)
for(slong j = 0;j < A.cols();++j)
tassert(Ap.at(i, j) == nmodxx::red(A.at(i, j), ctx));
tassert(A == fmpz_matxx::lift(Ap));
for(slong i = 0;i < A.rows();++i)
for(slong j = 0;j < A.cols();++j)
A.at(i, j) = abs(A.at(i, j));
tassert(A == fmpz_matxx::lift_unsigned(nmod_matxx::reduce(A, M)));
nmod_mat_vector v1(A.rows(), A.cols(), primes);
nmod_mat_vector v2(v1);
tassert(v1 == v2);
v2[0].at(0, 0) += nmodxx::red(1, ctx);
tassert(v2[0].at(0, 0) != v1[0].at(0, 0));
tassert(v1 != v2);
v2 = v1;
tassert(v1 == v2);
A.set_randtest(rand, 25);
for(unsigned i = 0;i < primes.size();++i)
v1[i] = nmod_matxx::reduce(A, primes[i]);
tassert(v1 == multi_mod(A, primes));
fmpz_combxx comb(primes);
tassert(multi_mod(A, primes) == multi_mod_precomp(A, primes, comb));
fmpzxx prod(1);
fmpz_matxx res(A.rows(), A.cols());
for(unsigned i = 0;i < primes.size();++i)
{
res = res.CRT(prod, v1[i], true);
prod *= primes[i];
}
tassert(res == A);
tassert(res == multi_CRT(v1, true));
tassert(res == multi_CRT_precomp(v1, comb, true));
}
void
test_lu()
{
frandxx rand;
nmod_matxx A = nmod_matxx::randtest(5, 5, 1031, rand);
nmod_matxx B1(A), B2(A);
nmod_matxx::lu_rt res = B1.set_lu();
permxx perm(5);
slong rank = nmod_mat_lu(perm._data(), B2._mat(), false);
tassert(B1 == B2 && rank == res.first() && perm == res.second());
B1 = A; B2 = A;
tassert(B1.set_lu_classical() == B2.set_lu() && B1 == B2);
B1 = A; B2 = A;
tassert(B1.set_lu_recursive() == B2.set_lu() && B1 == B2);
}
void
test_printing()
{
if(0)
print_pretty(nmod_matxx::zero(2, 2, 7)); // make sure this compiles
}
int
main()
{
std::cout << "nmod_matxx....";
test_init();
test_arithmetic();
test_functions();
test_randomisation();
test_reduction_reconstruction();
test_lu();
test_printing();
std::cout << "PASS" << std::endl;
return 0;
}