161 lines
4.4 KiB
C
161 lines
4.4 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2011 Fredrik Johansson
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "arith.h"
|
||
|
|
||
|
void
|
||
|
_arith_cyclotomic_polynomial(fmpz * a, ulong n, mp_ptr factors,
|
||
|
slong num_factors, ulong phi)
|
||
|
{
|
||
|
slong i, k;
|
||
|
int small;
|
||
|
ulong D;
|
||
|
|
||
|
D = phi / 2;
|
||
|
|
||
|
/* Phi_p(x) = 1 + x + x^2 + ... + x^{p-1} */
|
||
|
if (num_factors == 1)
|
||
|
{
|
||
|
for (i = 0; i <= D; i++)
|
||
|
fmpz_one(a + i);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Phi_{2n}(x) = Phi_n(-x)*/
|
||
|
if (factors[0] == UWORD(2))
|
||
|
{
|
||
|
_arith_cyclotomic_polynomial(a, n / 2, factors + 1,
|
||
|
num_factors - 1, phi);
|
||
|
for (i = 1; i <= D; i += 2)
|
||
|
fmpz_neg(a + i, a + i);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
fmpz_one(a);
|
||
|
for (i = 1; i <= D; i++)
|
||
|
fmpz_zero(a + i);
|
||
|
|
||
|
/* Coefficients are guaranteed not to overflow an fmpz */
|
||
|
small = (num_factors == 2) || /* Always +1/0/-1*/
|
||
|
(n < WORD(10163195)) || /* At most 27 bits */
|
||
|
(FLINT_BITS == 64 && n < WORD(169828113)); /* At most 60 bits */
|
||
|
|
||
|
/* Iterate over all divisors of n */
|
||
|
for (k = 0; k < (WORD(1) << num_factors); k++)
|
||
|
{
|
||
|
int mu;
|
||
|
ulong d;
|
||
|
|
||
|
mu = (num_factors & 1) ? -1 : 1;
|
||
|
d = WORD(1);
|
||
|
for (i = 0; i < num_factors; i++)
|
||
|
{
|
||
|
if ((k >> i) & 1)
|
||
|
{
|
||
|
d *= factors[i];
|
||
|
mu = -mu;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Multiply by (x^d - 1)^{\mu(n/d)} */
|
||
|
if (small)
|
||
|
{
|
||
|
if (mu == 1)
|
||
|
for (i = D; i >= d; i--) a[i] -= a[i - d];
|
||
|
else
|
||
|
for (i = d; i <= D; i++) a[i] += a[i - d];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (mu == 1)
|
||
|
for (i = D; i >= d; i--) fmpz_sub(a + i, a + i, a + i - d);
|
||
|
else
|
||
|
for (i = d; i <= D; i++) fmpz_add(a + i, a + i, a + i - d);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
arith_cyclotomic_polynomial(fmpz_poly_t poly, ulong n)
|
||
|
{
|
||
|
n_factor_t factors;
|
||
|
slong i, j;
|
||
|
ulong s, phi;
|
||
|
|
||
|
if (n <= 2)
|
||
|
{
|
||
|
if (n == 0)
|
||
|
{
|
||
|
fmpz_poly_set_ui(poly, UWORD(1));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpz_poly_fit_length(poly, 2);
|
||
|
fmpz_set_si(poly->coeffs, (n == 1) ? WORD(-1) : WORD(1));
|
||
|
fmpz_set_si(poly->coeffs + 1, WORD(1));
|
||
|
_fmpz_poly_set_length(poly, 2);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Write n = q * s where q is squarefree, compute the factors of q,
|
||
|
and compute phi(s) which determines the degree of the polynomial. */
|
||
|
n_factor_init(&factors);
|
||
|
n_factor(&factors, n, 1);
|
||
|
s = phi = UWORD(1);
|
||
|
for (i = 0; i < factors.num; i++)
|
||
|
{
|
||
|
phi *= factors.p[i] - 1;
|
||
|
while (factors.exp[i] > 1)
|
||
|
{
|
||
|
s *= factors.p[i];
|
||
|
factors.exp[i]--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fmpz_poly_fit_length(poly, phi * s + 1);
|
||
|
|
||
|
/* Evaluate lower half of Phi_s(x) */
|
||
|
_arith_cyclotomic_polynomial(poly->coeffs, n / s,
|
||
|
factors.p, factors.num, phi);
|
||
|
|
||
|
/* Palindromic extension */
|
||
|
for (i = 0; i < (phi + 1) / 2; i++)
|
||
|
fmpz_set(poly->coeffs + phi - i, poly->coeffs + i);
|
||
|
|
||
|
/* Stretch */
|
||
|
if (s != 1)
|
||
|
{
|
||
|
for (i = phi; i > 0; i--)
|
||
|
{
|
||
|
fmpz_set(poly->coeffs + i*s, poly->coeffs + i);
|
||
|
for (j = 1; j < s; j++)
|
||
|
fmpz_zero(poly->coeffs + i*s - j);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
_fmpz_poly_set_length(poly, phi * s + 1);
|
||
|
}
|