215 lines
5.3 KiB
C
215 lines
5.3 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2012 Sebastian Pancratz
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include <gmp.h>
|
||
|
#include "flint.h"
|
||
|
#include "fmpz.h"
|
||
|
#include "padic.h"
|
||
|
#include "ulong_extras.h"
|
||
|
|
||
|
/*
|
||
|
Carries out the finite series evaluation for the logarithm
|
||
|
\begin{equation*}
|
||
|
\sum_{i=1}^{n} a_i x^i
|
||
|
= \sum_{j=0}^{\ceil{n/b} - 1} \Bigl( \sum_{i=1}^b a_{i+jb} x^i \Bigr) x^{jb}
|
||
|
\end{equation*}
|
||
|
where $a_i = 1/i$ with the choice $b = \floor{\sqrt{n}}$,
|
||
|
all modulo $p^N$, where also $P = p^N$.
|
||
|
|
||
|
Does not support aliasing.
|
||
|
*/
|
||
|
static void
|
||
|
_padic_log_rectangular_series(fmpz_t z, const fmpz_t y, slong n,
|
||
|
const fmpz_t p, slong N, const fmpz_t P0)
|
||
|
{
|
||
|
if (n <= 2)
|
||
|
{
|
||
|
if (n == 1)
|
||
|
{
|
||
|
fmpz_mod(z, y, P0);
|
||
|
}
|
||
|
else /* n == 2; z = y(1 + y/2) */
|
||
|
{
|
||
|
if (fmpz_is_even(y))
|
||
|
{
|
||
|
fmpz_fdiv_q_2exp(z, y, 1);
|
||
|
}
|
||
|
else /* => p and y are odd */
|
||
|
{
|
||
|
fmpz_add(z, y, P0);
|
||
|
fmpz_fdiv_q_2exp(z, z, 1);
|
||
|
}
|
||
|
fmpz_add_ui(z, z, 1);
|
||
|
fmpz_mul(z, z, y);
|
||
|
fmpz_mod(z, z, P0);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const slong b = n_sqrt(n);
|
||
|
const slong k = fmpz_fits_si(p) ? n_flog(n, fmpz_get_si(p)) : 0;
|
||
|
|
||
|
slong i, j;
|
||
|
fmpz_t c, f, t, P1;
|
||
|
fmpz *ypow;
|
||
|
|
||
|
ypow = _fmpz_vec_init(b + 1);
|
||
|
fmpz_init(c);
|
||
|
fmpz_init(f);
|
||
|
fmpz_init(t);
|
||
|
fmpz_init(P1);
|
||
|
|
||
|
fmpz_pow_ui(P1, p, N + k);
|
||
|
|
||
|
fmpz_one(ypow + 0);
|
||
|
for (i = 1; i <= b; i++)
|
||
|
{
|
||
|
fmpz_mul(ypow + i, ypow + (i - 1), y);
|
||
|
fmpz_mod(ypow + i, ypow + i, P1);
|
||
|
}
|
||
|
|
||
|
fmpz_zero(z);
|
||
|
|
||
|
for (j = (n + (b - 1)) / b - 1; j >= 0; j--)
|
||
|
{
|
||
|
const slong hi = FLINT_MIN(b, n - j*b);
|
||
|
slong w;
|
||
|
|
||
|
/* Compute inner sum in c */
|
||
|
fmpz_rfac_uiui(f, 1 + j*b, hi);
|
||
|
|
||
|
fmpz_zero(c);
|
||
|
for (i = 1; i <= hi; i++)
|
||
|
{
|
||
|
fmpz_divexact_ui(t, f, i + j*b);
|
||
|
fmpz_addmul(c, t, ypow + i);
|
||
|
}
|
||
|
|
||
|
/* Multiply c by p^k f^{-1} */
|
||
|
w = fmpz_remove(f, f, p);
|
||
|
_padic_inv(f, f, p, N);
|
||
|
if (w > k)
|
||
|
{
|
||
|
fmpz_pow_ui(t, p, w - k);
|
||
|
fmpz_divexact(c, c, t);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpz_pow_ui(t, p, k - w);
|
||
|
fmpz_mul(c, c, t);
|
||
|
}
|
||
|
fmpz_mul(c, c, f);
|
||
|
|
||
|
/* Set z = z y^b + c */
|
||
|
fmpz_mul(t, z, ypow + b);
|
||
|
fmpz_add(z, c, t);
|
||
|
fmpz_mod(z, z, P1);
|
||
|
}
|
||
|
|
||
|
fmpz_pow_ui(f, p, k);
|
||
|
fmpz_divexact(z, z, f);
|
||
|
|
||
|
fmpz_clear(c);
|
||
|
fmpz_clear(f);
|
||
|
fmpz_clear(t);
|
||
|
fmpz_clear(P1);
|
||
|
_fmpz_vec_clear(ypow, b + 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void _padic_log_rectangular(fmpz_t z, const fmpz_t y, slong v, const fmpz_t p, slong N)
|
||
|
{
|
||
|
const slong n = _padic_log_bound(v, N, p) - 1;
|
||
|
fmpz_t pN;
|
||
|
|
||
|
fmpz_init(pN);
|
||
|
fmpz_pow_ui(pN, p, N);
|
||
|
|
||
|
_padic_log_rectangular_series(z, y, n, p, N, pN);
|
||
|
|
||
|
fmpz_sub(z, pN, z);
|
||
|
fmpz_clear(pN);
|
||
|
}
|
||
|
|
||
|
int padic_log_rectangular(padic_t rop, const padic_t op, const padic_ctx_t ctx)
|
||
|
{
|
||
|
const fmpz *p = ctx->p;
|
||
|
const slong N = padic_prec(rop);
|
||
|
|
||
|
if (padic_val(op) < 0)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpz_t x;
|
||
|
int ans;
|
||
|
|
||
|
fmpz_init(x);
|
||
|
|
||
|
padic_get_fmpz(x, op, ctx);
|
||
|
fmpz_sub_ui(x, x, 1);
|
||
|
fmpz_neg(x, x);
|
||
|
|
||
|
if (fmpz_is_zero(x))
|
||
|
{
|
||
|
padic_zero(rop);
|
||
|
ans = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpz_t t;
|
||
|
slong v;
|
||
|
|
||
|
fmpz_init(t);
|
||
|
v = fmpz_remove(t, x, p);
|
||
|
fmpz_clear(t);
|
||
|
|
||
|
if (v >= 2 || (!fmpz_equal_ui(p, 2) && v >= 1))
|
||
|
{
|
||
|
if (v >= N)
|
||
|
{
|
||
|
padic_zero(rop);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
_padic_log_rectangular(padic_unit(rop), x, v, p, N);
|
||
|
padic_val(rop) = 0;
|
||
|
_padic_canonicalise(rop, ctx);
|
||
|
}
|
||
|
ans = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ans = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fmpz_clear(x);
|
||
|
return ans;
|
||
|
}
|
||
|
}
|
||
|
|