621 lines
22 KiB
Plaintext
621 lines
22 KiB
Plaintext
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2011, 2012, 2013 Sebastian Pancratz
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Data structures
|
||
|
|
||
|
We represent an element of the extension
|
||
|
$\mathbf{Q}_q \cong \mathbf{Q}_p[X] / (f(X))$ as
|
||
|
a polynomial in $\mathbf{Q}_p[X]$ of degree less
|
||
|
than $\deg(f)$.
|
||
|
|
||
|
As such, \code{qadic_struct} and \code{qadic_t} are
|
||
|
typedef'ed as \code{padic_poly_struct} and \code{padic_poly_t}.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Context
|
||
|
|
||
|
We represent an unramified extension of $\mathbf{Q}_p$
|
||
|
via $\mathbf{Q}_q \cong \mathbf{Q}_p[X] / (f(X))$,
|
||
|
where $f \in \mathbf{Q}_p[X]$ is a monic, irreducible
|
||
|
polynomial which we assume to actually be in $\mathbf{Z}[X]$.
|
||
|
|
||
|
The first field in the context structure is a $p$-adic
|
||
|
context struct \code{pctx}, which contains data about
|
||
|
the prime~$p$, precomputed powers, the printing mode etc.
|
||
|
|
||
|
The polynomial $f$ is represented as a sparse polynomial
|
||
|
using two arrays $j$ and $a$ of length \code{len}, where
|
||
|
$f(X) = \sum_{i} a_{i} X^{j_{i}}$. We also assume that
|
||
|
the array~$j$ is sorted in ascending order.
|
||
|
|
||
|
We choose this data structure to improve reduction
|
||
|
modulo $f(X)$ in $\mathbf{Q}_p[X]$, assuming a sparse
|
||
|
polynomial $f(X)$ is chosen.
|
||
|
|
||
|
The field \code{var} contains the name of a generator
|
||
|
of the extension, which is used when printing the
|
||
|
elements.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void qadic_ctx_init_conway(qadic_ctx_t ctx,
|
||
|
const fmpz_t p, slong d, slong min, slong max,
|
||
|
const char *var, enum padic_print_mode mode)
|
||
|
|
||
|
Initialises the context \code{ctx} with prime $p$, extension degree $d$,
|
||
|
variable name \code{var} and printing mode \code{mode}.
|
||
|
|
||
|
Stores powers of $p$ with exponents between \code{min} (inclusive) and
|
||
|
\code{max} exclusive. Assumes that \code{min} is at most \code{max}.
|
||
|
|
||
|
Assumes that $p$ is a prime.
|
||
|
|
||
|
Assumes that the string \code{var} is a null-terminated string
|
||
|
of length at least one.
|
||
|
|
||
|
Assumes that the printing mode is one of \code{PADIC_TERSE},
|
||
|
\code{PADIC_SERIES}, or \code{PADIC_VAL_UNIT}.
|
||
|
|
||
|
This function also carries out some relevant precomputation for
|
||
|
arithmetic in $\mathbf{Q}_p / (p^N)$ such as powers of $p$ close
|
||
|
to $p^N$.
|
||
|
|
||
|
void qadic_ctx_clear(qadic_ctx_t ctx);
|
||
|
|
||
|
Clears all memory that has been allocated as part of the context.
|
||
|
|
||
|
slong qadic_ctx_degree(const qadic_ctx_t ctx)
|
||
|
|
||
|
Returns the extension degree.
|
||
|
|
||
|
static __inline__ void qadic_ctx_print(const qadic_ctx_t ctx)
|
||
|
|
||
|
Prints the data from the given context.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Memory management
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void qadic_init(qadic_t rop)
|
||
|
|
||
|
Initialises the element \code{rop}, setting its value to~$0$.
|
||
|
|
||
|
void qadic_init2(qadic_t rop, slong prec)
|
||
|
|
||
|
Initialises the element \code{rop} with the given output precision,
|
||
|
setting the value to~$0$.
|
||
|
|
||
|
void qadic_clear(qadic_t rop)
|
||
|
|
||
|
Clears the element \code{rop}.
|
||
|
|
||
|
void _fmpz_poly_reduce(fmpz *R, slong lenR,
|
||
|
const fmpz *a, const slong *j, slong len)
|
||
|
|
||
|
Reduces a polynomial \code{(R, lenR)} modulo a sparse monic
|
||
|
polynomial $f(X) = \sum_{i} a_{i} X^{j_{i}}$ of degree at
|
||
|
least~$2$.
|
||
|
|
||
|
Assumes that the array $j$ of positive length \code{len} is
|
||
|
sorted in ascending order.
|
||
|
|
||
|
Allows zero-padding in \code{(R, lenR)}.
|
||
|
|
||
|
void _fmpz_mod_poly_reduce(fmpz *R, slong lenR,
|
||
|
const fmpz *a, const slong *j, slong len, const fmpz_t p)
|
||
|
|
||
|
Reduces a polynomial \code{(R, lenR)} modulo a sparse monic
|
||
|
polynomial $f(X) = \sum_{i} a_{i} X^{j_{i}}$ of degree at
|
||
|
least~$2$ in $\mathbf{Z}/(p)$, where $p$ is typically a prime
|
||
|
power.
|
||
|
|
||
|
Assumes that the array $j$ of positive length \code{len} is
|
||
|
sorted in ascending order.
|
||
|
|
||
|
Allows zero-padding in \code{(R, lenR)}.
|
||
|
|
||
|
void qadic_reduce(qadic_t rop, const qadic_ctx_t ctx)
|
||
|
|
||
|
Reduces \code{rop} modulo $f(X)$ and $p^N$.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Properties
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
slong qadic_val(const qadic_t op)
|
||
|
|
||
|
Returns the valuation of \code{op}.
|
||
|
|
||
|
slong qadic_prec(const qadic_t op)
|
||
|
|
||
|
Returns the precision of \code{op}.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Randomisation
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void qadic_randtest(qadic_t rop, flint_rand_t state, const qadic_ctx_t ctx)
|
||
|
|
||
|
Generates a random element of $\mathbf{Q}_q$.
|
||
|
|
||
|
void qadic_randtest_not_zero(qadic_t rop, flint_rand_t state,
|
||
|
const qadic_ctx_t ctx)
|
||
|
|
||
|
Generates a random non-zero element of $\mathbf{Q}_q$.
|
||
|
|
||
|
void qadic_randtest_val(qadic_t rop, flint_rand_t state, slong v,
|
||
|
const qadic_ctx_t ctx)
|
||
|
|
||
|
Generates a random element of $\mathbf{Q}_q$ with prescribed
|
||
|
valuation \code{val}.
|
||
|
|
||
|
Note that if $v \geq N$ then the element is necessarily zero.
|
||
|
|
||
|
void qadic_randtest_int(qadic_t rop, flint_rand_t state, const qadic_ctx_t ctx)
|
||
|
|
||
|
Generates a random element of $\mathbf{Q}_q$ with non-negative valuation.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Assignments and conversions
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void qadic_set(qadic_t rop, const qadic_t op)
|
||
|
|
||
|
Sets \code{rop} to \code{op}.
|
||
|
|
||
|
void qadic_zero(qadic_t rop)
|
||
|
|
||
|
Sets \code{rop} to zero.
|
||
|
|
||
|
void qadic_one(qadic_t rop, const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to one, reduced in the given context.
|
||
|
|
||
|
Note that if the precision $N$ is non-positive then \code{rop}
|
||
|
is actually set to zero.
|
||
|
|
||
|
void qadic_gen(qadic_t rop, const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to the generator $X$ for the extension
|
||
|
when $N > 0$, and zero otherwise. If the extension degree
|
||
|
is one, raises an abort signal.
|
||
|
|
||
|
void qadic_set_ui(qadic_t rop, ulong op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to the integer \code{op}, reduced in the
|
||
|
context.
|
||
|
|
||
|
int qadic_get_padic(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
If the element \code{op} lies in $\mathbf{Q}_p$, sets \code{rop}
|
||
|
to its value and returns~$1$; otherwise, returns~$0$.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Comparison
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
int qadic_is_zero(const qadic_t op)
|
||
|
|
||
|
Returns whether \code{op} is equal to zero.
|
||
|
|
||
|
int qadic_is_one(const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Returns whether \code{op} is equal to one in the given
|
||
|
context.
|
||
|
|
||
|
int qadic_equal(const qadic_t op1, const qadic_t op2)
|
||
|
|
||
|
Returns whether \code{op1} and \code{op2} are equal.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Basic arithmetic
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void qadic_add(qadic_t rop, const qadic_t op1, const qadic_t op2,
|
||
|
const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to the sum of \code{op1} and \code{op2}.
|
||
|
|
||
|
Assumes that both \code{op1} and \code{op2} are reduced in the
|
||
|
given context and ensures that \code{rop} is, too.
|
||
|
|
||
|
void qadic_sub(qadic_t rop, const qadic_t op1, const qadic_t op2,
|
||
|
const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to the difference of \code{op1} and \code{op2}.
|
||
|
|
||
|
Assumes that both \code{op1} and \code{op2} are reduced in the
|
||
|
given context and ensures that \code{rop} is, too.
|
||
|
|
||
|
void qadic_neg(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to the negative of \code{op}.
|
||
|
|
||
|
Assumes that \code{op} is reduced in the given context and
|
||
|
ensures that \code{rop} is, too.
|
||
|
|
||
|
void qadic_mul(qadic_t rop, const qadic_t op1, const qadic_t op2,
|
||
|
const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to the product of \code{op1} and \code{op2},
|
||
|
reducing the output in the given context.
|
||
|
|
||
|
void _qadic_inv(fmpz *rop, const fmpz *op, slong len,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N)
|
||
|
|
||
|
Sets \code{(rop, d)} to the inverse of \code{(op, len)}
|
||
|
modulo $f(X)$ given by \code{(a,j,lena)} and $p^N$.
|
||
|
|
||
|
Assumes that \code{(op,len)} has valuation~$0$, that is,
|
||
|
that it represents a $p$-adic unit.
|
||
|
|
||
|
Assumes that \code{len} is at most $d$.
|
||
|
|
||
|
Does not support aliasing.
|
||
|
|
||
|
void qadic_inv(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to the inverse of \code{op}, reduced in the given context.
|
||
|
|
||
|
void _qadic_pow(fmpz *rop, const fmpz *op, slong len, const fmpz_t e,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p)
|
||
|
|
||
|
Sets \code{(rop, 2*d-1)} to \code{(op,len)} raised to the power~$e$,
|
||
|
reduced modulo $f(X)$ given by \code{(a, j, lena)} and $p$, which
|
||
|
is expected to be a prime power.
|
||
|
|
||
|
Assumes that $e \geq 0$ and that \code{len} is positive and at most~$d$.
|
||
|
|
||
|
Although we require that \code{rop} provides space for
|
||
|
$2d - 1$ coefficients, the output will be reduces modulo
|
||
|
$f(X)$, which is a polynomial of degree~$d$.
|
||
|
|
||
|
Does not support aliasing.
|
||
|
|
||
|
void qadic_pow(qadic_t rop, const qadic_t op, const fmpz_t e,
|
||
|
const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} the \code{op} raised to the power~$e$.
|
||
|
|
||
|
Currently assumes that $e \geq 0$.
|
||
|
|
||
|
Note that for any input \code{op}, \code{rop} is set to one in the
|
||
|
given context whenever $e = 0$.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Special functions
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void _qadic_exp_rectangular(fmpz *rop, const fmpz *op, slong v, slong len,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N, const fmpz_t pN)
|
||
|
|
||
|
Sets \code{(rop, 2*d - 1)} to the exponential of \code{(op, v, len)}
|
||
|
reduced modulo $p^N$, assuming that the series converges.
|
||
|
|
||
|
Assumes that \code{(op, v, len)} is non-zero.
|
||
|
|
||
|
Does not support aliasing.
|
||
|
|
||
|
int qadic_exp_rectangular(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Returns whether the exponential series converges at \code{op}
|
||
|
and sets \code{rop} to its value reduced modulo in the given
|
||
|
context.
|
||
|
|
||
|
void _qadic_exp_balanced(fmpz *rop, const fmpz *x, slong v, slong len,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N, const fmpz_t pN)
|
||
|
|
||
|
Sets \code{(rop, d)} to the exponential of \code{(op, v, len)}
|
||
|
reduced modulo $p^N$, assuming that the series converges.
|
||
|
|
||
|
Assumes that \code{len} is in $[1,d)$ but supports zero padding,
|
||
|
including the special case when \code{(op, len)} is zero.
|
||
|
|
||
|
Supports aliasing between \code{rop} and \code{op}.
|
||
|
|
||
|
int qadic_exp_balanced(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Returns whether the exponential series converges at \code{op}
|
||
|
and sets \code{rop} to its value reduced modulo in the given
|
||
|
context.
|
||
|
|
||
|
void _qadic_exp(fmpz *rop, const fmpz *op, slong v, slong len,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N)
|
||
|
|
||
|
Sets \code{(rop, 2*d - 1)} to the exponential of \code{(op, v, len)}
|
||
|
reduced modulo $p^N$, assuming that the series converges.
|
||
|
|
||
|
Assumes that \code{(op, v, len)} is non-zero.
|
||
|
|
||
|
Does not support aliasing.
|
||
|
|
||
|
int qadic_exp(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Returns whether the exponential series converges at \code{op}
|
||
|
and sets \code{rop} to its value reduced modulo in the given
|
||
|
context.
|
||
|
|
||
|
The exponential series converges if the valuation of \code{op}
|
||
|
is at least~$2$ or $1$ when $p$ is even or odd, respectively.
|
||
|
|
||
|
void _qadic_log_rectangular(fmpz *z, const fmpz *y, slong v, slong len,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N, const fmpz_t pN)
|
||
|
|
||
|
Computes
|
||
|
\begin{equation*}
|
||
|
z = - \sum_{i = 1}^{\infty} \frac{y^i}{i} \pmod{p^N}.
|
||
|
\end{equation*}
|
||
|
|
||
|
Note that this can be used to compute the $p$-adic logarithm
|
||
|
via the equation
|
||
|
\begin{align*}
|
||
|
\log(x) & = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i} \\
|
||
|
& = - \sum_{i=1}^{\infty} \frac{(1-x)^i}{i}.
|
||
|
\end{align*}
|
||
|
|
||
|
Assumes that $y = 1 - x$ is non-zero and that $v = \ord_p(y)$
|
||
|
is at least $1$ when $p$ is odd and at least $2$ when $p = 2$
|
||
|
so that the series converges.
|
||
|
|
||
|
Assumes that $y$ is reduced modulo $p^N$.
|
||
|
|
||
|
Assumes that $v < N$, and in particular $N \geq 2$.
|
||
|
|
||
|
Supports aliasing between $y$ and $z$.
|
||
|
|
||
|
int qadic_log_rectangular(qadic_t rop, const qadic_t op, const padic_ctx_t ctx)
|
||
|
|
||
|
Returns whether the $p$-adic logarithm function converges at
|
||
|
\code{op}, and if so sets \code{rop} to its value.
|
||
|
|
||
|
void _qadic_log_balanced(fmpz *z, const fmpz *y, slong len,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N, const fmpz_t pN)
|
||
|
|
||
|
Computes $(z, d)$ as
|
||
|
\begin{equation*}
|
||
|
z = - \sum_{i = 1}^{\infty} \frac{y^i}{i} \pmod{p^N}.
|
||
|
\end{equation*}
|
||
|
|
||
|
Assumes that $v = \ord_p(y)$ is at least $1$ when $p$ is odd and
|
||
|
at least $2$ when $p = 2$ so that the series converges.
|
||
|
|
||
|
Supports aliasing between $z$ and $y$.
|
||
|
|
||
|
int qadic_log_balanced(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Returns whether the $p$-adic logarithm function converges at
|
||
|
\code{op}, and if so sets \code{rop} to its value.
|
||
|
|
||
|
void _qadic_log(fmpz *z, const fmpz *y, slong v, slong len,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N, const fmpz_t pN)
|
||
|
|
||
|
Computes $(z, d)$ as
|
||
|
\begin{equation*}
|
||
|
z = - \sum_{i = 1}^{\infty} \frac{y^i}{i} \pmod{p^N}.
|
||
|
\end{equation*}
|
||
|
|
||
|
Note that this can be used to compute the $p$-adic logarithm
|
||
|
via the equation
|
||
|
\begin{align*}
|
||
|
\log(x) & = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i} \\
|
||
|
& = - \sum_{i=1}^{\infty} \frac{(1-x)^i}{i}.
|
||
|
\end{align*}
|
||
|
|
||
|
Assumes that $y = 1 - x$ is non-zero and that $v = \ord_p(y)$
|
||
|
is at least $1$ when $p$ is odd and at least $2$ when $p = 2$
|
||
|
so that the series converges.
|
||
|
|
||
|
Assumes that $(y, d)$ is reduced modulo $p^N$.
|
||
|
|
||
|
Assumes that $v < N$, and hence in particular $N \geq 2$.
|
||
|
|
||
|
Supports aliasing between $z$ and $y$.
|
||
|
|
||
|
int qadic_log(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Returns whether the $p$-adic logarithm function converges at
|
||
|
\code{op}, and if so sets \code{rop} to its value.
|
||
|
|
||
|
The $p$-adic logarithm function is defined by the usual series
|
||
|
\begin{equation*}
|
||
|
\log_p(x) = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(x-1)^i}{i}
|
||
|
\end{equation*}
|
||
|
but this only converges when $\ord_p(x)$ is at least $2$ or $1$
|
||
|
when $p = 2$ or $p > 2$, respectively.
|
||
|
|
||
|
void _qadic_frobenius_a(fmpz *rop, slong e,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N)
|
||
|
|
||
|
Computes $\sigma^e(X) \bmod{p^N}$ where $X$ is such that
|
||
|
$\mathbf{Q}_q \cong \mathbf{Q}_p[X]/(f(X))$.
|
||
|
|
||
|
Assumes that the precision $N$ is at least~$2$ and that the
|
||
|
extension is non-trivial, i.e.\ $d \geq 2$.
|
||
|
|
||
|
Assumes that $0 < e < d$.
|
||
|
|
||
|
Sets \code{(rop, 2*d-1)}, although the actual length of the
|
||
|
output will be at most~$d$.
|
||
|
|
||
|
void _qadic_frobenius(fmpz *rop, const fmpz *op, slong len, slong e,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N)
|
||
|
|
||
|
Sets \code{(rop, 2*d-1)} to $\Sigma$ evaluated at \code{(op, len)}.
|
||
|
|
||
|
Assumes that \code{len} is positive but at most~$d$.
|
||
|
|
||
|
Assumes that $0 < e < d$.
|
||
|
|
||
|
Does not support aliasing.
|
||
|
|
||
|
void qadic_frobenius(qadic_t rop, const qadic_t op, slong e, const qadic_ctx_t ctx)
|
||
|
|
||
|
Evaluates the homomorphism $\Sigma^e$ at \code{op}.
|
||
|
|
||
|
Recall that $\mathbf{Q}_q / \mathbf{Q}_p$ is Galois with Galois group
|
||
|
$\langle \Sigma \rangle \cong \langle \sigma \rangle$, which is also
|
||
|
isomorphic to $\mathbf{Z}/d\mathbf{Z}$, where
|
||
|
$\sigma \in \Gal(\mathbf{F}_q/\mathbf{F}_p)$ is the Frobenius element
|
||
|
$\sigma \colon x \mapsto x^p$ and $\Sigma$ is its lift to
|
||
|
$\Gal(\mathbf{Q}_q/\mathbf{Q}_p)$.
|
||
|
|
||
|
This functionality is implemented as \code{GaloisImage()} in Magma.
|
||
|
|
||
|
void _qadic_teichmuller(fmpz *rop, const fmpz *op, slong len,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N)
|
||
|
|
||
|
Sets \code{(rop, d)} to the Teichm\"uller lift of \code{(op, len)}
|
||
|
modulo~$p^N$.
|
||
|
|
||
|
Does not support aliasing.
|
||
|
|
||
|
void qadic_teichmuller(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to the Teichm\"uller lift of \code{op} to the
|
||
|
precision given in the context.
|
||
|
|
||
|
For a unit \code{op}, this is the unique $(q-1)$th root of unity
|
||
|
which is congruent to \code{op} modulo~$p$.
|
||
|
|
||
|
Sets \code{rop} to zero if \code{op} is zero in the given context.
|
||
|
|
||
|
Raises an exception if the valuation of \code{op} is negative.
|
||
|
|
||
|
void _qadic_trace(fmpz_t rop, const fmpz *op, slong len,
|
||
|
const fmpz *a, const slong *j, slong lena, const fmpz_t pN)
|
||
|
|
||
|
void qadic_trace(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to the trace of \code{op}.
|
||
|
|
||
|
For an element $a \in \mathbf{Q}_q$, multiplication by $a$ defines
|
||
|
a $\mathbf{Q}_p$-linear map on $\mathbf{Q}_q$. We define the trace
|
||
|
of $a$ as the trace of this map. Equivalently, if $\Sigma$ generates
|
||
|
$\Gal(\mathbf{Q}_q / \mathbf{Q}_p)$ then the trace of $a$ is equal to
|
||
|
$\sum_{i=0}^{d-1} \Sigma^i (a)$.
|
||
|
|
||
|
void _qadic_norm(fmpz_t rop, const fmpz *op, slong len,
|
||
|
const fmpz *a, const slong *j, slong lena,
|
||
|
const fmpz_t p, slong N)
|
||
|
|
||
|
Sets \code{rop} to the norm of the element \code{(op,len)}
|
||
|
in $\mathbf{Z}_q$ to precision $N$, where \code{len} is at
|
||
|
least one.
|
||
|
|
||
|
The result will be reduced modulo $p^N$.
|
||
|
|
||
|
Note that whenever \code{(op,len)} is a unit, so is its norm.
|
||
|
Thus, the output \code{rop} of this function will typically
|
||
|
not have to be canonicalised or reduced by the caller.
|
||
|
|
||
|
void qadic_norm(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Computes the norm of \code{op} to the given precision.
|
||
|
|
||
|
Algorithm selection is automatic depending on the input.
|
||
|
|
||
|
void qadic_norm_analytic(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Whenever \code{op} has valuation greater than $(p-1)^{-1}$, this
|
||
|
routine computes its norm \code{rop} via
|
||
|
\begin{equation*}
|
||
|
\Norm (x) = \exp \Bigl( \bigl( \Trace \log (x) \bigr) \Bigr).
|
||
|
\end{equation*}
|
||
|
|
||
|
In the special case that \code{op} lies in $\mathbf{Q}_p$, returns
|
||
|
its norm as $\Norm(x) = x^d$, where $d$ is the extension degree.
|
||
|
|
||
|
Otherwise, raises an \code{abort} signal.
|
||
|
|
||
|
The complexity of this implementation is quasi-linear in $d$ and $N$,
|
||
|
and polynomial in $\log p$.
|
||
|
|
||
|
void qadic_norm_resultant(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Sets \code{rop} to the norm of \code{op}, using the formula
|
||
|
\begin{equation*}
|
||
|
\Norm(x) = \ell(f)^{-\deg(a)} \Res(f(X), a(X)),
|
||
|
\end{equation*}
|
||
|
where $\mathbf{Q}_q \cong \mathbf{Q}_p[X] / (f(X))$, $\ell(f)$ is the
|
||
|
leading coefficient of $f(X)$, and $a(X) \in mathbf{Q}_p[X]$ denotes
|
||
|
the same polynomial as $x$.
|
||
|
|
||
|
The complexity of the current implementation is given by
|
||
|
$\mathcal{O}(d^4 M(N \log p))$, where $M(n)$ denotes the
|
||
|
complexity of multiplying to $n$-bit integers.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Output
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
int qadic_fprint_pretty(FILE *file, const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Prints a pretty representation of \code{op} to \code{file}.
|
||
|
|
||
|
In the current implementation, always returns~$1$. The return code is
|
||
|
part of the function's signature to allow for a later implementation to
|
||
|
return the number of characters printed or a non-positive error code.
|
||
|
|
||
|
int qadic_print_pretty(const qadic_t op, const qadic_ctx_t ctx)
|
||
|
|
||
|
Prints a pretty representation of \code{op} to \code{stdout}.
|
||
|
|
||
|
In the current implementation, always returns~$1$. The return code is
|
||
|
part of the function's signature to allow for a later implementation to
|
||
|
return the number of characters printed or a non-positive error code.
|
||
|
|