213 lines
5.3 KiB
C
213 lines
5.3 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2012 Sebastian Pancratz
|
||
|
Copyright (C) 2013 Mike Hansen
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "fq.h"
|
||
|
|
||
|
/*
|
||
|
Computes the characteristic polynomial of the $n \times n$ matrix $M$
|
||
|
modulo \code{pN} using a division-free algorithm in $O(n^4)$ ring
|
||
|
operations.
|
||
|
|
||
|
Only returns the determinant.
|
||
|
|
||
|
Assumes that $n$ is at least $2$.
|
||
|
*/
|
||
|
|
||
|
static void
|
||
|
_fmpz_mod_mat_det(fmpz_t rop, const fmpz * M, slong n, const fmpz_t pN)
|
||
|
{
|
||
|
if (n == 1)
|
||
|
{
|
||
|
fmpz_set(rop, M);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpz *F;
|
||
|
fmpz *a;
|
||
|
fmpz *A;
|
||
|
fmpz_t s;
|
||
|
slong t, i, j, p, k;
|
||
|
|
||
|
F = _fmpz_vec_init(n);
|
||
|
a = _fmpz_vec_init((n - 1) * n);
|
||
|
A = _fmpz_vec_init(n);
|
||
|
|
||
|
fmpz_init(s);
|
||
|
|
||
|
fmpz_neg(F + 0, M + 0 * n + 0);
|
||
|
|
||
|
for (t = 1; t < n; t++)
|
||
|
{
|
||
|
for (i = 0; i <= t; i++)
|
||
|
fmpz_set(a + 0 * n + i, M + i * n + t);
|
||
|
|
||
|
fmpz_set(A + 0, M + t * n + t);
|
||
|
|
||
|
for (p = 1; p < t; p++)
|
||
|
{
|
||
|
for (i = 0; i <= t; i++)
|
||
|
{
|
||
|
fmpz_zero(s);
|
||
|
for (j = 0; j <= t; j++)
|
||
|
fmpz_addmul(s, M + i * n + j, a + (p - 1) * n + j);
|
||
|
fmpz_mod(a + p * n + i, s, pN);
|
||
|
}
|
||
|
|
||
|
fmpz_set(A + p, a + p * n + t);
|
||
|
}
|
||
|
|
||
|
fmpz_zero(s);
|
||
|
for (j = 0; j <= t; j++)
|
||
|
fmpz_addmul(s, M + t * n + j, a + (t - 1) * n + j);
|
||
|
fmpz_mod(A + t, s, pN);
|
||
|
|
||
|
for (p = 0; p <= t; p++)
|
||
|
{
|
||
|
fmpz_sub(F + p, F + p, A + p);
|
||
|
for (k = 0; k < p; k++)
|
||
|
fmpz_submul(F + p, A + k, F + (p - k - 1));
|
||
|
fmpz_mod(F + p, F + p, pN);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Now [F{n-1}, F{n-2}, ..., F{0}, 1] is the
|
||
|
characteristic polynomial of the matrix M.
|
||
|
*/
|
||
|
|
||
|
if (n % WORD(2) == 0)
|
||
|
{
|
||
|
fmpz_set(rop, F + (n - 1));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpz_neg(rop, F + (n - 1));
|
||
|
fmpz_mod(rop, rop, pN);
|
||
|
}
|
||
|
|
||
|
_fmpz_vec_clear(F, n);
|
||
|
_fmpz_vec_clear(a, (n - 1) * n);
|
||
|
_fmpz_vec_clear(A, n);
|
||
|
fmpz_clear(s);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Computes the norm on $\mathbf{Q}_q$ to precision $N \geq 1$.
|
||
|
When $N = 1$, this computes the norm on $\mathbf{F}_q$.
|
||
|
*/
|
||
|
|
||
|
void
|
||
|
_fq_norm(fmpz_t rop, const fmpz * op, slong len, const fq_ctx_t ctx)
|
||
|
{
|
||
|
const slong d = fq_ctx_degree(ctx);
|
||
|
const slong N = 1;
|
||
|
|
||
|
fmpz *pN;
|
||
|
const fmpz *p = fq_ctx_prime(ctx);
|
||
|
|
||
|
if (N == 1)
|
||
|
{
|
||
|
pN = (fmpz *) p; /* XXX: Read-only */
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
pN = flint_malloc(sizeof(fmpz));
|
||
|
fmpz_init(pN);
|
||
|
fmpz_pow_ui(pN, p, N);
|
||
|
}
|
||
|
|
||
|
if (len == 1)
|
||
|
{
|
||
|
fmpz_powm_ui(rop, op + 0, d, pN);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Construct an ad hoc matrix M and set rop to det(M) */
|
||
|
{
|
||
|
const slong n = d + len - 1;
|
||
|
slong i, k;
|
||
|
fmpz *M;
|
||
|
|
||
|
M = flint_calloc(n * n, sizeof(fmpz));
|
||
|
|
||
|
for (k = 0; k < len - 1; k++)
|
||
|
{
|
||
|
for (i = 0; i < ctx->len; i++)
|
||
|
{
|
||
|
M[k * n + k + (d - ctx->j[i])] = ctx->a[i];
|
||
|
}
|
||
|
}
|
||
|
for (k = 0; k < d; k++)
|
||
|
{
|
||
|
for (i = 0; i < len; i++)
|
||
|
{
|
||
|
M[(len - 1 + k) * n + k + (len - 1 - i)] = op[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
_fmpz_mod_mat_det(rop, M, n, pN);
|
||
|
|
||
|
flint_free(M);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
XXX: This part of the code is currently untested as the Conway
|
||
|
polynomials used for the extension Fq/Fp are monic.
|
||
|
*/
|
||
|
if (!fmpz_is_one(ctx->a + (ctx->len - 1)))
|
||
|
{
|
||
|
fmpz_t f;
|
||
|
|
||
|
fmpz_init(f);
|
||
|
fmpz_powm_ui(f, ctx->a + (ctx->len - 1), len - 1, pN);
|
||
|
fmpz_invmod(f, f, pN);
|
||
|
fmpz_mul(rop, f, rop);
|
||
|
fmpz_mod(rop, rop, pN);
|
||
|
fmpz_clear(f);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (N > 1)
|
||
|
{
|
||
|
fmpz_clear(pN);
|
||
|
flint_free(pN);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
fq_norm(fmpz_t rop, const fq_t op, const fq_ctx_t ctx)
|
||
|
{
|
||
|
if (fq_is_zero(op, ctx))
|
||
|
{
|
||
|
fmpz_zero(rop);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
_fq_norm(rop, op->coeffs, op->length, ctx);
|
||
|
}
|
||
|
}
|