142 lines
3.6 KiB
C
142 lines
3.6 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2008 Peter Shrimpton
|
||
|
Copyright (C) 2009 William Hart
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include <gmp.h>
|
||
|
#include "flint.h"
|
||
|
#include "ulong_extras.h"
|
||
|
|
||
|
n_pair_t
|
||
|
fchain_precomp(mp_limb_t m, mp_limb_t n, double npre)
|
||
|
{
|
||
|
n_pair_t current = {0, 0}, old;
|
||
|
int length;
|
||
|
mp_limb_t power, xy;
|
||
|
|
||
|
old.x = UWORD(2);
|
||
|
old.y = n - UWORD(3);
|
||
|
|
||
|
length = FLINT_BIT_COUNT(m);
|
||
|
power = (UWORD(1) << (length - 1));
|
||
|
|
||
|
for (; length > 0; length--)
|
||
|
{
|
||
|
xy = n_mulmod_precomp(old.x, old.y, n, npre);
|
||
|
|
||
|
xy = n_addmod(xy, UWORD(3), n);
|
||
|
|
||
|
if (m & power)
|
||
|
{
|
||
|
current.y =
|
||
|
n_submod(n_mulmod_precomp(old.y, old.y, n, npre), UWORD(2), n);
|
||
|
current.x = xy;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
current.x =
|
||
|
n_submod(n_mulmod_precomp(old.x, old.x, n, npre), UWORD(2), n);
|
||
|
current.y = xy;
|
||
|
}
|
||
|
|
||
|
power >>= 1;
|
||
|
old = current;
|
||
|
}
|
||
|
|
||
|
return current;
|
||
|
}
|
||
|
|
||
|
n_pair_t
|
||
|
fchain2_preinv(mp_limb_t m, mp_limb_t n, mp_limb_t ninv)
|
||
|
{
|
||
|
n_pair_t current = {0, 0}, old;
|
||
|
int length;
|
||
|
mp_limb_t power, xy;
|
||
|
|
||
|
old.x = UWORD(2);
|
||
|
old.y = n - UWORD(3);
|
||
|
|
||
|
length = FLINT_BIT_COUNT(m);
|
||
|
power = (UWORD(1) << (length - 1));
|
||
|
|
||
|
for (; length > 0; length--)
|
||
|
{
|
||
|
xy = n_mulmod2_preinv(old.x, old.y, n, ninv);
|
||
|
|
||
|
xy = n_addmod(xy, UWORD(3), n);
|
||
|
|
||
|
if (m & power)
|
||
|
{
|
||
|
current.y =
|
||
|
n_submod(n_mulmod2_preinv(old.y, old.y, n, ninv), UWORD(2), n);
|
||
|
current.x = xy;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
current.x =
|
||
|
n_submod(n_mulmod2_preinv(old.x, old.x, n, ninv), UWORD(2), n);
|
||
|
current.y = xy;
|
||
|
}
|
||
|
|
||
|
power >>= 1;
|
||
|
old = current;
|
||
|
}
|
||
|
|
||
|
return current;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
n_is_probabprime_fibonacci(mp_limb_t n)
|
||
|
{
|
||
|
mp_limb_t m;
|
||
|
n_pair_t V;
|
||
|
|
||
|
if (FLINT_ABS((mp_limb_signed_t) n) <= UWORD(3))
|
||
|
{
|
||
|
if (n >= UWORD(2))
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
m = (n - n_jacobi(WORD(5), n)) / 2; /* cannot overflow
|
||
|
as (5/n) = 0 for n = 2^64-1 */
|
||
|
|
||
|
if (FLINT_BIT_COUNT(n) <= FLINT_D_BITS)
|
||
|
{
|
||
|
double npre = n_precompute_inverse(n);
|
||
|
|
||
|
V = fchain_precomp(m, n, npre);
|
||
|
return (n_mulmod_precomp(n - UWORD(3), V.x, n, npre) ==
|
||
|
n_mulmod_precomp(UWORD(2), V.y, n, npre));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mp_limb_t ninv = n_preinvert_limb(n);
|
||
|
|
||
|
V = fchain2_preinv(m, n, ninv);
|
||
|
return (n_mulmod2_preinv(n - UWORD(3), V.x, n, ninv) ==
|
||
|
n_mulmod2_preinv(UWORD(2), V.y, n, ninv));
|
||
|
}
|
||
|
}
|