354 lines
10 KiB
C
354 lines
10 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2012 Lina Kulakova
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <sys/types.h>
|
||
|
#include <time.h>
|
||
|
#include <unistd.h>
|
||
|
#include <gmp.h>
|
||
|
|
||
|
#include "flint.h"
|
||
|
#include "nmod_poly.h"
|
||
|
|
||
|
#define NP 100 /* number of moduli */
|
||
|
#define ND 8 /* number of degrees */
|
||
|
|
||
|
/*
|
||
|
Benchmarking code for factorisation in nmod_poly.
|
||
|
|
||
|
Test how the relation between n (degree of polynomial) and p
|
||
|
affects working time for Cantor-Zassenhaus, Berlekamp and
|
||
|
Kaltofen-Shoup algorithms. p and n are chosen independently.
|
||
|
*/
|
||
|
|
||
|
int main(void)
|
||
|
{
|
||
|
FLINT_TEST_INIT(state);
|
||
|
nmod_poly_t f, g;
|
||
|
nmod_poly_factor_t res;
|
||
|
mp_limb_t modulus;
|
||
|
int i, j, k, n, num;
|
||
|
double t, T1, T2, T3, T4;
|
||
|
|
||
|
const slong degs[] = {8, 16, 32, 64, 128, 256, 512, 1024};
|
||
|
const int iter_count[] = {10000, 5000, 1000, 500, 300, 100, 50, 20};
|
||
|
|
||
|
|
||
|
|
||
|
flint_printf("Random polynomials\n");
|
||
|
for (i = 0; i < NP; i++)
|
||
|
{
|
||
|
modulus = n_randtest_prime(state, 0);
|
||
|
flint_printf("========== p: %wu\n", modulus);
|
||
|
fflush(stdout);
|
||
|
|
||
|
for (j = 0; j < ND; j++)
|
||
|
{
|
||
|
n = degs[j];
|
||
|
flint_printf(">>>>>n: %d\n", n);
|
||
|
fflush(stdout);
|
||
|
|
||
|
T1 = 0;
|
||
|
T2 = 0;
|
||
|
T3 = 0;
|
||
|
for (k = 0; k < iter_count[j]; k++)
|
||
|
{
|
||
|
nmod_poly_init(f, modulus);
|
||
|
nmod_poly_randtest_not_zero(f, state, n);
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_with_cantor_zassenhaus(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T1 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_with_berlekamp(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T2 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_kaltofen_shoup(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T3 += t;
|
||
|
|
||
|
nmod_poly_clear(f);
|
||
|
}
|
||
|
|
||
|
flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3);
|
||
|
fflush(stdout);
|
||
|
|
||
|
if (T1 > T3 + 1)
|
||
|
break;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* This code checks whether nmod_poly_factor
|
||
|
made a correct choice between CZ, B and KS */
|
||
|
|
||
|
flint_printf("Check choice correctness\n");
|
||
|
for (i = 0; i < NP; i++)
|
||
|
{
|
||
|
modulus = n_randtest_prime(state, 0);
|
||
|
flint_printf("========== p: %wu\n", modulus);
|
||
|
fflush(stdout);
|
||
|
|
||
|
for (j = 0; j < ND; j++)
|
||
|
{
|
||
|
n = degs[j];
|
||
|
flint_printf(">>>>>n: %d\n", n);
|
||
|
fflush(stdout);
|
||
|
|
||
|
T1 = 0;
|
||
|
T2 = 0;
|
||
|
T3 = 0;
|
||
|
T4 = 0;
|
||
|
for (k = 0; k < iter_count[j]; k++)
|
||
|
{
|
||
|
nmod_poly_init(f, modulus);
|
||
|
nmod_poly_randtest_not_zero(f, state, n);
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_with_cantor_zassenhaus(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T1 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_berlekamp(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T2 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_kaltofen_shoup(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T3 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T4 += t;
|
||
|
|
||
|
nmod_poly_clear(f);
|
||
|
}
|
||
|
|
||
|
flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf F: %.2lf\n", T1, T2, T3, T4);
|
||
|
fflush(stdout);
|
||
|
|
||
|
if (T1 > T3 + 1)
|
||
|
break;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
flint_printf("Irreducible polynomials\n");
|
||
|
for (i = 0; i < NP; i++)
|
||
|
{
|
||
|
modulus = n_randtest_prime(state, 0);
|
||
|
flint_printf("========== p: %wu\n", modulus);
|
||
|
fflush(stdout);
|
||
|
|
||
|
for (j = 0; j < ND; j++)
|
||
|
{
|
||
|
n = degs[j];
|
||
|
flint_printf(">>>>>n: %d\n", n);
|
||
|
fflush(stdout);
|
||
|
|
||
|
T1 = 0;
|
||
|
T2 = 0;
|
||
|
T3 = 0;
|
||
|
for (k = 0; k < iter_count[j]; k++)
|
||
|
{
|
||
|
nmod_poly_init(f, modulus);
|
||
|
nmod_poly_randtest_irreducible(f, state, n);
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_with_cantor_zassenhaus(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T1 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_with_berlekamp(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T2 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_kaltofen_shoup(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T3 += t;
|
||
|
|
||
|
nmod_poly_clear(f);
|
||
|
}
|
||
|
|
||
|
flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3);
|
||
|
fflush(stdout);
|
||
|
|
||
|
if (T1 > T3 + 1)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
flint_printf("Product of two irreducible polynomials\n");
|
||
|
for (i = 0; i < NP; i++)
|
||
|
{
|
||
|
modulus = n_randtest_prime(state, 0);
|
||
|
flint_printf("========== p: %wu\n", modulus);
|
||
|
fflush(stdout);
|
||
|
|
||
|
for (j = 0; j < ND; j++)
|
||
|
{
|
||
|
n = (degs[j] >> 1);
|
||
|
flint_printf(">>>>>n: %d\n", n);
|
||
|
fflush(stdout);
|
||
|
|
||
|
T1 = 0;
|
||
|
T2 = 0;
|
||
|
T3 = 0;
|
||
|
for (k = 0; k < iter_count[j]; k++)
|
||
|
{
|
||
|
nmod_poly_init(f, modulus);
|
||
|
nmod_poly_init(g, modulus);
|
||
|
nmod_poly_randtest_irreducible(f, state, n);
|
||
|
nmod_poly_randtest_irreducible(g, state, n);
|
||
|
nmod_poly_mul(f, f, g);
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_with_cantor_zassenhaus(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T1 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_with_berlekamp(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T2 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_kaltofen_shoup(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T3 += t;
|
||
|
|
||
|
nmod_poly_clear(f);
|
||
|
nmod_poly_clear(g);
|
||
|
}
|
||
|
|
||
|
flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3);
|
||
|
fflush(stdout);
|
||
|
|
||
|
if (T1 > T3 + 1)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
flint_printf("Product of 8 small irreducible polynomials\n");
|
||
|
for (i = 0; i < NP; i++)
|
||
|
{
|
||
|
modulus = n_randtest_prime(state, 0);
|
||
|
flint_printf("========== p: %wu\n", modulus);
|
||
|
fflush(stdout);
|
||
|
|
||
|
for (j = 1; j < ND; j++)
|
||
|
{
|
||
|
n = (degs[j] >> 3);
|
||
|
flint_printf(">>>>>n: %d\n", n);
|
||
|
fflush(stdout);
|
||
|
|
||
|
T1 = 0;
|
||
|
T2 = 0;
|
||
|
T3 = 0;
|
||
|
for (k = 0; k < iter_count[j]; k++)
|
||
|
{
|
||
|
nmod_poly_init(f, modulus);
|
||
|
nmod_poly_init(g, modulus);
|
||
|
nmod_poly_randtest_irreducible(f, state, n);
|
||
|
for (num = 1; num < 8; num++)
|
||
|
{
|
||
|
nmod_poly_randtest_irreducible(g, state, n);
|
||
|
nmod_poly_mul(f, f, g);
|
||
|
}
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_with_cantor_zassenhaus(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T1 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_with_berlekamp(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T2 += t;
|
||
|
|
||
|
t = clock();
|
||
|
nmod_poly_factor_init(res);
|
||
|
nmod_poly_factor_kaltofen_shoup(res, f);
|
||
|
nmod_poly_factor_clear(res);
|
||
|
t = (clock() - t) / CLOCKS_PER_SEC;
|
||
|
T3 += t;
|
||
|
|
||
|
nmod_poly_clear(f);
|
||
|
nmod_poly_clear(g);
|
||
|
}
|
||
|
|
||
|
flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3);
|
||
|
fflush(stdout);
|
||
|
|
||
|
if (T1 > T3 + 1)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
flint_randclear(state);
|
||
|
return EXIT_SUCCESS;
|
||
|
}
|
||
|
|