pqc/external/flint-2.4.3/fmpz/doc/fmpz.txt

1156 lines
40 KiB
Plaintext
Raw Normal View History

2014-05-18 22:03:37 +00:00
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2009 William Hart
Copyright (C) 2011 Sebastian Pancratz
******************************************************************************/
*******************************************************************************
Memory management
*******************************************************************************
void fmpz_init(fmpz_t f)
A small \code{fmpz_t} is initialised, i.e.\ just a \code{slong}.
The value is set to zero.
void fmpz_init2(fmpz_t f, ulong limbs)
Initialises the given \code{fmpz_t} to have space for the given
number of limbs.
If \code{limbs} is zero then a small \code{fmpz_t} is allocated,
i.e.\ just a \code{slong}. The value is also set to zero. It is
not necessary to call this function except to save time. A call
to \code{fmpz_init} will do just fine.
void fmpz_clear(fmpz_t f)
Clears the given \code{fmpz_t}, releasing any memory associated
with it, either back to the stack or the OS, depending on
whether the reentrant or non-reentrant version of FLINT is built.
void fmpz_init_set(fmpz_t f, const fmpz_t g)
Initialises $f$ and sets it to the value of $g$.
void fmpz_init_set_ui(fmpz_t f, ulong g)
Initialises $f$ and sets it to the value of $g$.
*******************************************************************************
Random generation
For thread-safety, the randomisation methods take as one of their
parameters an object of type \code{flint_rand_t}. Before calling
any of the randomisation functions such an object first has to be
initialised with a call to \code{flint_randinit()}. When one is
finished generating random numbers, one should call
\code{flint_randclear()} to clean up.
*******************************************************************************
void fmpz_randbits(fmpz_t f, flint_rand_t state, mp_bitcnt_t bits)
Generates a random signed integer whose absolute value has the given
number of bits.
void fmpz_randtest(fmpz_t f, flint_rand_t state, mp_bitcnt_t bits)
Generates a random signed integer whose absolute value has a number
of bits which is random from $0$ up to \code{bits} inclusive.
void fmpz_randtest_unsigned(fmpz_t f, flint_rand_t state, mp_bitcnt_t bits)
Generates a random unsigned integer whose value has a number
of bits which is random from $0$ up to \code{bits} inclusive.
void fmpz_randtest_not_zero(fmpz_t f, flint_rand_t state, mp_bitcnt_t bits)
As per \code{fmpz_randtest}, but the result will not be $0$.
If \code{bits} is set to $0$, an exception will result.
void fmpz_randm(fmpz_t f, flint_rand_t state, const fmpz_t m)
Generates a random integer in the range $0$ to $m - 1$ inclusive.
void fmpz_randtest_mod(fmpz_t f, flint_rand_t state, const fmpz_t m)
Generates a random integer in the range $0$ to $m - 1$ inclusive,
with an increased probability of generating values close to
the endpoints.
void fmpz_randtest_mod_signed(fmpz_t f, flint_rand_t state, const fmpz_t m)
Generates a random integer in the range $(-m/2, m/2]$, with an
increased probability of generating values close to the
endpoints or close to zero.
*******************************************************************************
Conversion
*******************************************************************************
slong fmpz_get_si(const fmpz_t f)
Returns $f$ as a \code{slong}. The result is undefined
if $f$ does not fit into a \code{slong}.
ulong fmpz_get_ui(const fmpz_t f)
Returns $f$ as an \code{ulong}. The result is undefined
if $f$ does not fit into an \code{ulong} or is negative.
void fmpz_set_d(fmpz_t f, double c)
Sets $f$ to the \code{double} $c$, rounding down towards zero if
the value of $c$ is fractional. The outcome is undefined if $c$ is
infinite, not-a-number, or subnormal.
double fmpz_get_d(const fmpz_t f)
Returns $f$ as a \code{double}, rounding down towards zero if
\code{f} cannot be represented exactly. The outcome is undefined
if \code{f} is too large to fit in the normal range of a double.
double fmpz_get_d_2exp(slong * exp, const fmpz_t f)
Returns $f$ as a normalized \code{double} along with a $2$-exponent
\code{exp}, i.e.\ if $r$ is the return value then \code{f = r * 2^exp},
to within 1 ULP.
void fmpz_get_mpz(mpz_t x, const fmpz_t f)
Sets the \code{mpz_t} $x$ to the same value as $f$.
char * fmpz_get_str(char * str, int b, const fmpz_t f)
Returns the representation of $f$ in base~$b$, which can vary
between $2$ and $62$, inclusive.
If \code{str} is \code{NULL}, the result string is allocated by
the function. Otherwise, it is up to the caller to ensure that
the allocated block of memory is sufficiently large.
void fmpz_set_si(fmpz_t f, slong val)
Sets $f$ to the given \code{slong} value.
void fmpz_set_ui(fmpz_t f, ulong val)
Sets $f$ to the given \code{ulong} value.
void fmpz_neg_ui(fmpz_t f, ulong val)
Sets $f$ to the given \code{ulong} value, and then negates $f$.
void fmpz_set_uiui(fmpz_t f, mp_limb_t hi, mp_limb_t lo)
Sets $f$ to \code{lo}, plus \code{hi} shifted to the left by
\code{FLINT_BITS}.
void fmpz_neg_uiui(fmpz_t f, mp_limb_t hi, mp_limb_t lo)
Sets $f$ to \code{lo}, plus \code{hi} shifted to the left by
\code{FLINT_BITS}, and then negates $f$.
void fmpz_set_mpz(fmpz_t f, const mpz_t x)
Sets $f$ to the given \code{mpz_t} value.
int fmpz_set_str(fmpz_t f, const char * str, int b)
Sets $f$ to the value given in the null-terminated string \code{str},
in base~$b$. The base~$b$ can vary between $2$ and $62$, inclusive.
Returns $0$ if the string contains a valid input and $-1$ otherwise.
void fmpz_set_ui_smod(fmpz_t f, mp_limb_t x, mp_limb_t m)
Sets $f$ to the signed remainder $y \equiv x \bmod m$ satisfying
$-m/2 < y \leq m/2$, given $x$ which is assumed to satisfy
$0 \leq x < m$.
void flint_mpz_init_set_readonly(mpz_t z, const fmpz_t f)
Sets the unitialised \code{mpz_t} $z$ to the value of the
readonly \code{fmpz_t} $f$.
Note that it is assumed that $f$ does not change during
the lifetime of $z$.
The integer $z$ has to be cleared by a call to
\code{flint_mpz_clear_readonly()}.
The suggested use of the two functions is as follows:
\begin{lstlisting}[language=C]
fmpz_t f;
...
{
mpz_t z;
flint_mpz_init_set_readonly(z, f);
foo(..., z);
flint_mpz_clear_readonly(z);
}
\end{lstlisting}
This provides a convenient function for user code, only
requiring to work with the types \code{fmpz_t} and \code{mpz_t}.
In critical code, the following approach may be favourable:
\begin{lstlisting}[language=C]
fmpz_t f;
...
{
__mpz_struct *z;
z = _fmpz_promote_val(f);
foo(..., z);
_fmpz_demote_val(f);
}
\end{lstlisting}
void flint_mpz_clear_readonly(mpz_t z)
Clears the readonly \code{mpz_t} $z$.
void fmpz_init_set_readonly(fmpz_t f, const mpz_t z)
Sets the uninitialised \code{fmpz_t} $f$ to a readonly
version of the integer $z$.
Note that the value of $z$ is assumed to remain constant
throughout the lifetime of $f$.
The \code{fmpz_t} $f$ has to be cleared by calling the
function \code{fmpz_clear_readonly()}.
The suggested use of the two functions is as follows:
\begin{lstlisting}[language=C]
mpz_t z;
...
{
fmpz_t f;
fmpz_init_set_readonly(f, z);
foo(..., f);
fmpz_clear_readonly(f);
}
\end{lstlisting}
void fmpz_clear_readonly(fmpz_t f)
Clears the readonly \code{fmpz_t} $f$.
*******************************************************************************
Input and output
*******************************************************************************
int fmpz_read(fmpz_t f)
Reads a multiprecision integer from \code{stdin}. The format is
an optional minus sign, followed by one or more digits. The
first digit should be non-zero unless it is the only digit.
In case of success, returns a positive number. In case of failure,
returns a non-positive number.
This convention is adopted in light of the return values of
\code{scanf} from the standard library and \code{mpz_inp_str}
from MPIR.
int fmpz_fread(FILE * file, fmpz_t f)
Reads a multiprecision integer from the stream \code{file}. The
format is an optional minus sign, followed by one or more digits.
The first digit should be non-zero unless it is the only digit.
In case of success, returns a positive number. In case of failure,
returns a non-positive number.
This convention is adopted in light of the return values of
\code{scanf} from the standard library and \code{mpz_inp_str}
from MPIR.
size_t fmpz_inp_raw( fmpz_t x, FILE *fin )
Reads a multiprecision integer from the stream \code{file}. The
format is raw binary format write by \code{fmpz_out_raw}.
In case of success, return a posivitive number, indicating number of bytes read.
In case of failure 0.
This function calls the \code{mpz_inp_raw} function in library gmp. So that it
can read the raw data writen by \code{mpz_inp_raw} directly.
int fmpz_print(fmpz_t x)
Prints the value $x$ to \code{stdout}, without a carriage return(CR).
The value is printed as either~$0$, the decimal digits of a
positive integer, or a minus sign followed by the digits of
a negative integer.
In case of success, returns a positive number. In case of failure,
returns a non-positive number.
This convention is adopted in light of the return values of
\code{flint_printf} from the standard library and \code{mpz_out_str}
from MPIR.
int fmpz_fprint(FILE * file, fmpz_t x)
Prints the value $x$ to \code{file}, without a carriage return(CR).
The value is printed as either~$0$, the decimal digits of a
positive integer, or a minus sign followed by the digits of
a negative integer.
In case of success, returns a positive number. In case of failure,
returns a non-positive number.
This convention is adopted in light of the return values of
\code{flint_printf} from the standard library and \code{mpz_out_str}
from MPIR.
size_t fmpz_out_raw( FILE *fout, const fmpz_t x )
Writes the value $x$ to \code{file}.
The value is writen in raw binary format. The integer is written in
portable format, with 4 bytes of size information, and that many bytes
of linbs. Both the size and the limbs are written in decreasing
significance order (i.e., in big-endian).
The output can be read with \code{fmpz_inp_raw}.
In case of success, return a positive number, indicating number of bytes written.
In case of failure, return 0.
The output of this can also be read by \code{mpz_inp_raw} from GMP >= 2,
Since this function calls the \code{mpz_inp_raw} function in library gmp.
*******************************************************************************
Basic properties and manipulation
*******************************************************************************
size_t fmpz_sizeinbase(const fmpz_t f, int b)
Returns the size of the absolute value of $f$ in base~$b$, measured in
numbers of digits. The base~$b$ can be between $2$ and $62$, inclusive.
mp_bitcnt_t fmpz_bits(const fmpz_t f)
Returns the number of bits required to store the absolute
value of $f$. If $f$ is $0$ then $0$ is returned.
mp_size_t fmpz_size(const fmpz_t f)
Returns the number of limbs required to store the absolute
value of $f$. If $f$ is zero then $0$ is returned.
int fmpz_sgn(const fmpz_t f)
Returns $-1$ if the sign of $f$ is negative, $+1$ if it is positive,
otherwise returns $0$.
mp_bitcnt_t fmpz_val2(const fmpz_t f)
Returns the exponent of the largest power of two dividing $f$, or
equivalently the number of trailing zeros in the binary expansion of $f$.
If $f$ is zero then $0$ is returned.
void fmpz_swap(fmpz_t f, fmpz_t g)
Efficiently swaps $f$ and $g$. No data is copied.
void fmpz_set(fmpz_t f, const fmpz_t g)
Sets $f$ to the same value as $g$.
void fmpz_zero(fmpz_t f)
Sets $f$ to zero.
void fmpz_one(fmpz_t f)
Sets $f$ to one.
int fmpz_abs_fits_ui(const fmpz_t f)
Returns whether the absolute value of $f$
fits into an \code{ulong}.
int fmpz_fits_si(const fmpz_t f)
Returns whether the value of $f$ fits into a \code{slong}.
void fmpz_setbit(fmpz_t f, ulong i)
Sets bit index~$i$ of $f$.
int fmpz_tstbit(const fmpz_t f, ulong i)
Test bit index~$i$ of $f$ and return $0$ or $1$, accordingly.
mp_limb_t fmpz_abs_lbound_ui_2exp(slong * exp, const fmpz_t x, int bits)
For nonzero $x$, returns a mantissa $m$ with exactly \code{bits} bits and
sets \code{exp} to an exponent $e$, such that $|x| \ge m 2^e$. The number
of bits must be between 1 and \code{FLINT_BITS} inclusive.
The mantissa is guaranteed to be correctly rounded.
mp_limb_t fmpz_abs_ubound_ui_2exp(slong * exp, const fmpz_t x, int bits)
For nonzero $x$, returns a mantissa $m$ with exactly \code{bits} bits
and sets \code{exp} to an exponent $e$, such that $|x| \le m 2^e$.
The number of bits must be between 1 and \code{FLINT_BITS} inclusive.
The mantissa is either correctly rounded or one unit too large
(possibly meaning that the exponent is one too large,
if the mantissa is a power of two).
*******************************************************************************
Comparison
*******************************************************************************
int fmpz_cmp(const fmpz_t f, const fmpz_t g)
Returns a negative value if $f < g$, positive value if $g < f$,
otherwise returns $0$.
int fmpz_cmp_ui(const fmpz_t f, ulong g)
Returns a negative value if $f < g$, positive value if $g < f$,
otherwise returns $0$.
int fmpz_cmp_si(const fmpz_t f, slong g)
Returns a negative value if $f < g$, positive value if $g < f$,
otherwise returns $0$.
int fmpz_cmpabs(const fmpz_t f, const fmpz_t g)
Returns a negative value if $\abs{f} < \abs{g}$, positive value if
$\abs{g} < \abs{f}$, otherwise returns $0$.
int fmpz_equal(const fmpz_t f, const fmpz_t g)
Returns $1$ if $f$ is equal to $g$, otherwise returns $0$.
int fmpz_equal_ui(const fmpz_t f, ulong g)
Returns $1$ if $f$ is equal to $g$, otherwise returns $0$.
int fmpz_equal_si(const fmpz_t f, slong g)
Returns $1$ if $f$ is equal to $g$, otherwise returns $0$.
int fmpz_is_zero(const fmpz_t f)
Returns $1$ if $f$ is $0$, otherwise returns $0$.
int fmpz_is_one(const fmpz_t f)
Returns $1$ if $f$ is equal to one, otherwise returns $0$.
int fmpz_is_pm1(const fmpz_t f)
Returns $1$ if $f$ is equal to one or minus one, otherwise returns
$0$.
int fmpz_is_even(const fmpz_t f)
Returns whether the integer $f$ is even.
int fmpz_is_odd(const fmpz_t f)
Returns whether the integer $f$ is odd.
*******************************************************************************
Basic arithmetic
*******************************************************************************
void fmpz_neg(fmpz_t f1, const fmpz_t f2)
Sets $f_1$ to $-f_2$.
void fmpz_abs(fmpz_t f1, const fmpz_t f2)
Sets $f_1$ to the absolute value of $f_2$.
void fmpz_add(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to $g + h$.
void fmpz_add_ui(fmpz_t f, const fmpz_t g, ulong x)
Sets $f$ to $g + x$ where $x$ is an \code{ulong}.
void fmpz_sub(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to $g - h$.
void fmpz_sub_ui(fmpz_t f, const fmpz_t g, ulong x)
Sets $f$ to $g - x$ where $x$ is an \code{ulong}.
void fmpz_mul(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to $g \times h$.
void fmpz_mul_si(fmpz_t f, const fmpz_t g, slong x)
Sets $f$ to $g \times x$ where $x$ is a \code{slong}.
void fmpz_mul_ui(fmpz_t f, const fmpz_t g, ulong x)
Sets $f$ to $g \times x$ where $x$ is an \code{ulong}.
void fmpz_mul2_uiui(fmpz_t f, const fmpz_t g, ulong x, ulong y)
Sets $f$ to $g \times x \times y$ where $x$ and $y$ are of type
\code{ulong}.
void fmpz_mul_2exp(fmpz_t f, const fmpz_t g, ulong e)
Sets $f$ to $g \times 2^e$.
void fmpz_addmul(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to $f + g \times h$.
void fmpz_addmul_ui(fmpz_t f, const fmpz_t g, ulong x)
Sets $f$ to $f + g \times x$ where $x$ is an \code{ulong}.
void fmpz_submul(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to $f - g \times h$.
void fmpz_submul_ui(fmpz_t f, const fmpz_t g, ulong x)
Sets $f$ to $f - g \times x$ where $x$ is an \code{ulong}.
void fmpz_cdiv_q(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to the quotient of $g$ by $h$, rounding up towards
infinity. If $h$ is $0$ an exception is raised.
void fmpz_cdiv_q_si(fmpz_t f, const fmpz_t g, slong h)
Sets $f$ to the quotient of $g$ by $h$, rounding up towards
infinity. If $h$ is $0$ an exception is raised.
void fmpz_cdiv_q_ui(fmpz_t f, const fmpz_t g, ulong h)
Sets $f$ to the quotient of $g$ by $h$, rounding up towards
infinity. If $h$ is $0$ an exception is raised.
void fmpz_fdiv_q_2exp(fmpz_t f, const fmpz_t g, ulong exp)
Sets $f$ to $g$ divided by \code{2^exp}, rounding down
towards minus infinity.
void fmpz_fdiv_q(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to the quotient of $g$ by $h$, rounding down towards
minus infinity. If $h$ is $0$ an exception is raised.
void fmpz_fdiv_q_si(fmpz_t f, const fmpz_t g, slong h)
Set $f$ to the quotient of $g$ by $h$, rounding down towards
minus infinity. If $h$ is $0$ an exception is raised.
void fmpz_fdiv_q_ui(fmpz_t f, const fmpz_t g, ulong h)
Set $f$ to the quotient of $g$ by $h$, rounding down towards
minus infinity. If $h$ is $0$ an exception is raised.
void fmpz_fdiv_qr(fmpz_t f, fmpz_t s, const fmpz_t g, const fmpz_t h)
Sets $f$ to the quotient of $g$ by $h$, rounding down towards
minus infinity and $s$ to the remainder. If $h$ is $0$ an exception
is raised.
void fmpz_fdiv_r(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to the remainder from dividing $g$ by $h$ and rounding
the quotient down towards minus infinity. If $h$ is $0$ an exception
is raised.
void fmpz_fdiv_q_2exp(fmpz_t f, const fmpz_t g, ulong exp)
Sets $f$ to $g$ divided by \code{2^exp}, rounding down towards
minus infinity.
void fmpz_fdiv_r_2exp(fmpz_t f, const fmpz_t g, ulong exp)
Sets $f$ to the remainder of $g$ upon division by \code{2^exp},
where the remainder is non-negative.
void fmpz_tdiv_q(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to the quotient of $g$ by $h$, rounding down towards
zero. If $h$ is $0$ an exception is raised.
void fmpz_tdiv_qr(fmpz_t f, fmpz_t s, const fmpz_t g, const fmpz_t h)
Sets $f$ to the quotient of $g$ by $h$, rounding down towards
zero and $s$ to the remainder. If $h$ is $0$ an exception
is raised.
void fmpz_tdiv_q_si(fmpz_t f, const fmpz_t g, slong h)
Set $f$ to the quotient of $g$ by $h$, rounding down towards
zero. If $h$ is $0$ an exception is raised.
void fmpz_tdiv_q_ui(fmpz_t f, const fmpz_t g, ulong h)
Set $f$ to the quotient of $g$ by $h$, rounding down towards
zero. If $h$ is $0$ an exception is raised.
ulong fmpz_tdiv_ui(const fmpz_t g, ulong h)
Returns the absolute value of the remainder from dividing $g$
by $h$, rounding towards zero. If $h$ is $0$ an exception is
raised.
void fmpz_tdiv_q_2exp(fmpz_t f, const fmpz_t g, ulong exp)
Sets $f$ to $g$ divided by \code{2^exp}, rounding down towards
zero.
void fmpz_divexact(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to the quotient of $g$ and $h$, assuming that the
division is exact, i.e.\ $g$ is a multiple of $h$. If $h$
is $0$ an exception is raised.
void fmpz_divexact_si(fmpz_t f, const fmpz_t g, slong h)
Sets $f$ to the quotient of $g$ and $h$, assuming that the
division is exact, i.e.\ $g$ is a multiple of $h$. If $h$
is $0$ an exception is raised.
void fmpz_divexact_ui(fmpz_t f, const fmpz_t g, ulong h)
Sets $f$ to the quotient of $g$ and $h$, assuming that the
division is exact, i.e.\ $g$ is a multiple of $h$. If $h$
is $0$ an exception is raised.
void fmpz_divexact2_uiui(fmpz_t f, const fmpz_t g, ulong x, ulong y)
Sets $f$ to the quotient of $g$ and $h = x \times y$, assuming that
the division is exact, i.e.\ $g$ is a multiple of $h$.
If $x$ or $y$ is $0$ an exception is raised.
int fmpz_divisible(const fmpz_t f, const fmpz_t g)
Returns whether $f$ is divisible by $g > 0$.
int fmpz_divisible_si(const fmpz_t f, slong g)
Returns whether $f$ is divisible by $g > 0$.
void fmpz_mod(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to the remainder of $g$ divided by $h$. The remainder
is always taken to be positive.
ulong fmpz_mod_ui(fmpz_t f, const fmpz_t g, ulong x)
Sets $f$ to $g$ reduced modulo $x$ where $x$ is an
\code{ulong}. If $x$ is $0$ an exception will result.
ulong fmpz_fdiv_ui(const fmpz_t g, ulong x)
Returns the remainder of $g$ modulo $x$ where $x$ is an
\code{ulong}, without changing $g$. If $x$ is $0$ an
exception will result.
void fmpz_preinvn_init(fmpz_preinvn_t inv, fmpz_t f)
Compute a precomputed inverse \code{inv} of \code{f} for use in the
\code{preinvn} functions listed below.
void fmpz_preinvn_clear(fmpz_preinvn_t inv)
Clean up the resources used by a precomputed inverse created with the
\code{fmpz_preinvn_init} function.
void fmpz_fdiv_qr_preinvn(fmpz_t f, fmpz_t s, const fmpz_t g,
const fmpz_t h, const fmpz_preinvn_t hinv)
As per \code{fmpz_fdiv_qr}, but takes a precomputed inverse \code{hinv}
of $h$ constructed using \code{fmpz_preinvn}.
This function will be faster than \code{fmpz_fdiv_qr_preinvn} when the
number of limbs of $h$ is at least \code{PREINVN_CUTOFF}.
void fmpz_pow_ui(fmpz_t f, const fmpz_t g, ulong x)
Sets $f$ to $g^x$ where $x$ is an \code{ulong}. If
$x$ is $0$ and $g$ is $0$, then $f$ will be set to $1$.
void fmpz_powm_ui(fmpz_t f, const fmpz_t g, ulong e, const fmpz_t m)
Sets $f$ to $g^e \bmod{m}$. If $e = 0$, sets $f$ to $1$.
Assumes that $m \neq 0$, raises an \code{abort} signal otherwise.
void fmpz_powm(fmpz_t f, const fmpz_t g, const fmpz_t e, const fmpz_t m)
Sets $f$ to $g^e \bmod{m}$. If $e = 0$, sets $f$ to $1$.
Assumes that $m \neq 0$, raises an \code{abort} signal otherwise.
slong fmpz_clog(const fmpz_t x, const fmpz_t b)
slong fmpz_clog_ui(const fmpz_t x, ulong b)
Returns $\ceil{\log_b x}$.
Assumes that $x \geq 1$ and $b \geq 2$ and that
the return value fits into a signed \code{slong}.
slong fmpz_flog(const fmpz_t x, const fmpz_t b)
slong fmpz_flog_ui(const fmpz_t x, ulong b)
Returns $\floor{\log_b x}$.
Assumes that $x \geq 1$ and $b \geq 2$ and that
the return value fits into a signed \code{slong}.
double fmpz_dlog(const fmpz_t x)
Returns a double precision approximation of the
natural logarithm of $x$.
The accuracy depends on the implementation of the floating-point
logarithm provided by the C standard library. The result can
typically be expected to have a relative error no greater than 1-2 bits.
int fmpz_sqrtmod(fmpz_t b, const fmpz_t a, const fmpz_t p)
Returns whether $a$ is a quadratic residue or zero modulo $p$
and sets $b$ to a square root of $a$ if this is the case.
void fmpz_sqrt(fmpz_t f, const fmpz_t g)
Sets $f$ to the integer part of the square root of $g$, where
$g$ is assumed to be non-negative. If $g$ is negative, an exception
is raised.
void fmpz_sqrtrem(fmpz_t f, fmpz_t r, const fmpz_t g)
Sets $f$ to the integer part of the square root of $g$, where $g$ is
assumed to be non-negative, and sets $r$ to the remainder, that is,
the difference $g - f^2$. If $g$ is negative, an exception is raised.
The behaviour is undefined if $f$ and $r$ are aliases.
int fmpz_is_square(const fmpz_t f)
Returns nonzero if $f$ is a perfect square and zero otherwise.
void fmpz_root(fmpz_t r, const fmpz_t f, slong n)
Set $r$ to the integer part of the $n$-th root of $f$. Requires that
$n > 0$ and that if $n$ is even then $f$ be non-negative, otherwise an
exception is raised.
void fmpz_fac_ui(fmpz_t f, ulong n)
Sets $f$ to the factorial $n!$ where $n$ is an \code{ulong}.
void fmpz_fib_ui(fmpz_t f, ulong n)
Sets $f$ to the Fibonacci number $F_n$ where $n$ is an
\code{ulong}.
void fmpz_bin_uiui(fmpz_t f, ulong n, ulong k)
Sets $f$ to the binomial coefficient ${n \choose k}$.
void fmpz_rfac_ui(fmpz_t r, const fmpz_t x, ulong k)
Sets $r$ to the rising factorial $x (x+1) (x+2) \cdots (x+k-1)$.
void fmpz_rfac_uiui(fmpz_t r, ulong x, ulong k)
Sets $r$ to the rising factorial $x (x+1) (x+2) \cdots (x+k-1)$.
void fmpz_mul_tdiv_q_2exp(fmpz_t f, const fmpz_t g, const fmpz_t h, ulong exp)
Sets $f$ to the product $g$ and $h$ divided by \code{2^exp}, rounding
down towards zero.
void fmpz_mul_si_tdiv_q_2exp(fmpz_t f, const fmpz_t g, slong x, ulong exp)
Sets $f$ to the product $g$ and $x$ divided by \code{2^exp}, rounding
down towards zero.
*******************************************************************************
Greatest common divisor
*******************************************************************************
void fmpz_gcd(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to the greatest common divisor of $g$ and $h$. The
result is always positive, even if one of $g$ and $h$ is
negative.
void fmpz_lcm(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to the least common multiple of $g$ and $h$. The
result is always nonnegative, even if one of $g$ and $h$ is
negative.
void fmpz_gcdinv(fmpz_t d, fmpz_t a, const fmpz_t f, const fmpz_t g)
Given integers $f, g$ with $0 \leq f < g$, computes the
greatest common divisor $d = \gcd(f, g)$ and the modular
inverse $a = f^{-1} \pmod{g}$, whenever $f \neq 0$.
Assumes that $d$ and $a$ are not aliased.
void fmpz_xgcd(fmpz_t d, fmpz_t a, fmpz_t b, const fmpz_t f, const fmpz_t g)
Computes the extended GCD of $f$ and $g$, i.e. values $a$ and $b$
such that $af + bg = d$, where $d = \gcd(f, g)$.
Assumes that $d$ is not aliased with $a$ or $b$ and that $a$ and $b$
are not aliased.
void fmpz_xgcd_partial(fmpz_t co2, fmpz_t co1,
fmpz_t r2, fmpz_t r1, const fmpz_t L)
This function is an implementation of Lehmer extended GCD with early
termination, as used in the \code{qfb} module. It terminates early when
remainders fall below the specified bound. The initial values \code{r1}
and \code{r2} are treated as successive remainders in the Euclidean
algorithm and are replaced with the last two remainders computed. The
values \code{co1} and \code{co2} are the last two cofactors and satisfy
the identity \code{co2*r1 - co1*r2 == +/- r2_orig} upon termination, where
\code{r2_orig} is the starting value of \code{r2} supplied, and \code{r1}
and \code{r2} are the final values.
Aliasing of inputs is not allowed. Similarly aliasing of inputs and outputs
is not allowed.
*******************************************************************************
Modular arithmetic
*******************************************************************************
slong _fmpz_remove(fmpz_t x, const fmpz_t f, double finv)
Removes all factors $f$ from $x$ and returns the number of such.
Assumes that $x$ is non-zero, that $f > 1$ and that \code{finv}
is the precomputed \code{double} inverse of $f$ whenever $f$ is
a small integer and $0$ otherwise.
Does not support aliasing.
slong fmpz_remove(fmpz_t rop, const fmpz_t op, const fmpz_t f)
Remove all occurrences of the factor $f > 1$ from the
integer \code{op} and sets \code{rop} to the resulting
integer.
If \code{op} is zero, sets \code{rop} to \code{op} and
returns $0$.
Returns an \code{abort} signal if any of the assumptions
are violated.
int fmpz_invmod(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to the inverse of $g$ modulo $h$. The value of $h$ may
not be $0$ otherwise an exception results. If the inverse exists
the return value will be non-zero, otherwise the return value will
be $0$ and the value of $f$ undefined.
void fmpz_negmod(fmpz_t f, const fmpz_t g, const fmpz_t h)
Sets $f$ to $-g \pmod{h}$, assuming $g$ is reduced modulo $h$.
int fmpz_jacobi(const fmpz_t a, const fmpz_t p);
Computes the Jacobi symbol of $a$ modulo $p$, where $p$ is a prime
and $a$ is reduced modulo $p$.
*******************************************************************************
Bit packing and unpacking
*******************************************************************************
int fmpz_bit_pack(mp_limb_t * arr, mp_bitcnt_t shift,
mp_bitcnt_t bits, fmpz_t coeff, int negate, int borrow)
Shifts the given coefficient to the left by \code{shift} bits and adds
it to the integer in \code{arr} in a field of the given number of bits.
\begin{lstlisting}
shift bits --------------
X X X C C C C 0 0 0 0 0 0 0
\end{lstlisting}
An optional borrow of~$1$ can be subtracted from \code{coeff} before
it is packed. If \code{coeff} is negative after the borrow, then a
borrow will be returned by the function.
The value of \code{shift} is assumed to be less than \code{FLINT_BITS}.
All but the first \code{shift} bits of \code{arr} are assumed to be zero
on entry to the function.
The value of \code{coeff} may also be optionally (and notionally) negated
before it is used, by setting the \code{negate} parameter to $-1$.
int fmpz_bit_unpack(fmpz_t coeff, mp_limb_t * arr,
mp_bitcnt_t shift, mp_bitcnt_t bits, int negate, int borrow)
A bit field of the given number of bits is extracted from \code{arr},
starting after \code{shift} bits, and placed into \code{coeff}. An
optional borrow of~$1$ may be added to the coefficient. If the result
is negative, a borrow of $1$ is returned. Finally, the resulting
\code{coeff} may be negated by setting the \code{negate} parameter to $-1$.
The value of \code{shift} is expected to be less than \code{FLINT_BITS}.
void fmpz_bit_unpack_unsigned(fmpz_t coeff,
const mp_limb_t * arr, mp_bitcnt_t shift, mp_bitcnt_t bits)
A bit field of the given number of bits is extracted from \code{arr},
starting after \code{shift} bits, and placed into \code{coeff}.
The value of \code{shift} is expected to be less than \code{FLINT_BITS}.
*******************************************************************************
Logic Operations
*******************************************************************************
void fmpz_complement(fmpz_t r, const fmpz_t f)
The variable \code{r} is set to the ones-complement of \code{f}.
void fmpz_clrbit(fmpz_t f, ulong i)
Sets the \code{i}th bit in \code{f} to zero.
void fmpz_combit(fmpz_t f, ulong i)
Complements the \code{i}th bit in \code{f}.
void fmpz_and(fmpz_t r, const fmpz_t a, const fmpz_t b)
Sets \code{r} to the bit-wise logical \code{and} of \code{a} and \code{b}.
void fmpz_or(fmpz_t r, const fmpz_t a, const fmpz_t b)
Sets \code{r} to the bit-wise logical (inclusive) \code{or} of
\code{a} and \code{b}.
void fmpz_xor(fmpz_t r, const fmpz_t a, const fmpz_t b)
Sets \code{r} to the bit-wise logical exclusive \code{or} of
\code{a} and \code{b}.
int fmpz_popcnt(const fmpz_t a)
Returns the number of '1' bits in the given Z (aka Hamming weight or
population count).
The return value is undefined if the input is negative.
*******************************************************************************
Chinese remaindering
The following functions can be used to reconstruct an integer from its
residues modulo a set of small (word-size) prime numbers. The first two
functions, \code{fmpz_CRT_ui} and \code{fmpz_CRT_ui_unsigned}, are easy
to use and allow building the result one residue at a time, which is
useful when the number of needed primes is not known in advance.
The remaining functions support performing the modular reductions and
reconstruction using balanced subdivision. This greatly improves
efficiency for large integers but assumes that the basis of primes is
known in advance. The user must precompute a \code{comb}
structure and temporary working space with \code{fmpz_comb_init} and
\code{fmpz_comb_temp_init}, and free this data afterwards.
For simple demonstration programs showing how to use the CRT functions,
see \code{crt.c} and \code{multi_crt.c} in the \code{examples}
directory.
*******************************************************************************
void fmpz_CRT_ui(fmpz_t out, fmpz_t r1, fmpz_t m1, ulong r2, ulong m2,
int sign)
Uses the Chinese Remainder Theorem to compute the unique integer
$0 \le x < M$ (if sign = 0) or $-M/2 < x \le M/2$ (if sign = 1)
congruent to $r_1$ modulo $m_1$ and $r_2$ modulo $m_2$,
where where $M = m_1 \times m_2$. The result $x$ is stored in \code{out}.
It is assumed that $m_1$ and $m_2$ are positive integers greater
than $1$ and coprime.
If sign = 0, it is assumed that $0 \le r_1 < m_1$ and $0 \le r_2 < m_2$.
Otherwise, it is assumed that $-m_1 \le r_1 < m_1$ and $0 \le r_2 < m_2$.
void fmpz_multi_mod_ui(mp_limb_t * out, const fmpz_t in,
const fmpz_comb_t comb, fmpz_comb_temp_t temp)
Reduces the multiprecision integer \code{in} modulo each of the primes
stored in the \code{comb} structure. The array \code{out} will be filled
with the residues modulo these primes. The structure \code{temp} is
temporary space which must be provided by \code{fmpz_comb_temp_init} and
cleared by \code{fmpz_comb_temp_clear}.
void fmpz_multi_CRT_ui_unsigned(fmpz_t output, const mp_limb_t * residues,
const fmpz_comb_t comb, fmpz_comb_temp_t temp)
This function takes a set of residues modulo the list of primes
contained in the \code{comb} structure and reconstructs the unique
unsigned multiprecision integer modulo the product of the primes
which has these residues modulo the corresponding primes. The structure
\code{temp} is temporary space which must be provided by
\code{fmpz_comb_temp_init} and cleared by \code{fmpz_comb_temp_clear}.
void fmpz_multi_CRT_ui(fmpz_t output, mp_srcptr residues,
const fmpz_comb_t comb, fmpz_comb_temp_t temp)
This function takes a set of residues modulo the list of primes
contained in the \code{comb} structure and reconstructs a multiprecision
integer modulo the product of the primes which has
these residues modulo the corresponding primes.
If $N$ is the product of all the primes then \code{out} is normalised to
be in the range $[0, N)$ if sign = 0 and the range $[-(N-1)/2, N/2]$
if sign = 1. The array \code{temp} is temporary
space which must be provided by \code{fmpz_comb_temp_init} and
cleared by \code{fmpz_comb_temp_clear}.
void fmpz_comb_init(fmpz_comb_t comb, mp_srcptr primes, slong num_primes)
Initialises a \code{comb} structure for multimodular reduction and
recombination. The array \code{primes} is assumed to contain
\code{num_primes} primes each of \code{FLINT_BITS - 1} bits. Modular
reductions and recombinations will be done modulo this list of primes.
The \code{primes} array must not be \code{free}'d until the \code{comb}
structure is no longer required and must be cleared by the user.
void fmpz_comb_temp_init(fmpz_comb_temp_t temp, const fmpz_comb_t comb)
Creates temporary space to be used by multimodular and CRT functions
based on an initialised \code{comb} structure.
void fmpz_comb_clear(fmpz_comb_t comb)
Clears the given \code{comb} structure, releasing any memory it uses.
void fmpz_comb_temp_clear(fmpz_comb_temp_t temp)
Clears temporary space \code{temp} used by multimodular and CRT functions
using the given \code{comb} structure.
*******************************************************************************
Primality testing
*******************************************************************************
int fmpz_is_probabprime(const fmpz_t p)
Performs some trial division and then some probabilistic primality tests.
If $p$ is definitely composite, the function returns $0$, otherwise it
is declared probably prime, i.e. prime for most practical purposes, and
the function returns $1$. The chance of declaring a composite prime is
very small.
Subsequent calls to the same function do not increase the probability of
the number being prime.
int fmpz_is_prime_pseudosquare(const fmpz_t n)
Return $0$ is $n$ is composite. If $n$ is too large (greater than about
$94$ bits) the function fails silently and returns $-1$, otherwise, if
$n$ is proven prime by the pseudosquares method, return $1$.
Tests if $n$ is a prime according to~\citep[Theorem~2.7]{LukPatWil1996}.
% "Some results on pseudosquares" by Lukes, Patterson and Williams,
% Math. Comp. vol 65, No. 213. pp 361-372. See
% http://www.ams.org/mcom/1996-65-213/S0025-5718-96-00678-3/
% S0025-5718-96-00678-3.pdf
We first factor $N$ using trial division up to some limit $B$.
In fact, the number of primes used in the trial factoring is at
most \code{FLINT_PSEUDOSQUARES_CUTOFF}.
Next we compute $N/B$ and find the next pseudosquare $L_p$ above
this value, using a static table as per
\url{http://research.att.com/~njas/sequences/b002189.txt}.
As noted in the text, if $p$ is prime then Step~3 will pass. This
test rejects many composites, and so by this time we suspect
that $p$ is prime. If $N$ is $3$ or $7$ modulo $8$, we are done,
and $N$ is prime.
We now run a probable prime test, for which no known
counterexamples are known, to reject any composites. We then
proceed to prove $N$ prime by executing Step~4. In the case that
$N$ is $1$ modulo $8$, if Step~4 fails, we extend the number of primes
$p_i$ at Step~3 and hope to find one which passes Step~4. We take
the test one past the largest $p$ for which we have pseudosquares
$L_p$ tabulated, as this already corresponds to the next $L_p$ which
is bigger than $2^{64}$ and hence larger than any prime we might be
testing.
As explained in the text, Condition~4 cannot fail if $N$ is prime.
The possibility exists that the probable prime test declares a
composite prime. However in that case an error is printed, as
that would be of independent interest.