163 lines
4.4 KiB
C
163 lines
4.4 KiB
C
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2010 Sebastian Pancratz
|
||
|
Copyright (C) 2011 Fredrik Johansson
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include <gmp.h>
|
||
|
#include "flint.h"
|
||
|
#include "fmpz.h"
|
||
|
#include "fmpz_poly.h"
|
||
|
#include "fmpq_poly.h"
|
||
|
|
||
|
|
||
|
#define FLINT_REVERSE_NEWTON_CUTOFF 4
|
||
|
|
||
|
void
|
||
|
_fmpq_poly_revert_series_newton(fmpz * Qinv, fmpz_t den,
|
||
|
const fmpz * Q, const fmpz_t Qden, slong n)
|
||
|
{
|
||
|
if (fmpz_is_one(Qden) && (n > 1) && fmpz_is_pm1(Q + 1))
|
||
|
{
|
||
|
_fmpz_poly_revert_series(Qinv, Q, n);
|
||
|
fmpz_one(den);
|
||
|
}
|
||
|
else if (n <= 2)
|
||
|
{
|
||
|
fmpz_zero(Qinv);
|
||
|
if (n == 2)
|
||
|
{
|
||
|
fmpz_set(Qinv + 1, Qden);
|
||
|
fmpz_set(den, Q + 1);
|
||
|
_fmpq_poly_canonicalise(Qinv, den, 2);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
slong *a, i, k;
|
||
|
fmpz *T, *U, *V;
|
||
|
fmpz_t Tden, Uden, Vden;
|
||
|
|
||
|
T = _fmpz_vec_init(n);
|
||
|
U = _fmpz_vec_init(n);
|
||
|
V = _fmpz_vec_init(n);
|
||
|
fmpz_init(Tden);
|
||
|
fmpz_init(Uden);
|
||
|
fmpz_init(Vden);
|
||
|
|
||
|
k = n;
|
||
|
for (i = 1; (WORD(1) << i) < k; i++);
|
||
|
a = (slong *) flint_malloc(i * sizeof(slong));
|
||
|
a[i = 0] = k;
|
||
|
while (k >= FLINT_REVERSE_NEWTON_CUTOFF)
|
||
|
a[++i] = (k = (k + 1) / 2);
|
||
|
|
||
|
_fmpq_poly_revert_series_lagrange(Qinv, den, Q, Qden, k);
|
||
|
_fmpz_vec_zero(Qinv + k, n - k);
|
||
|
|
||
|
for (i--; i >= 0; i--)
|
||
|
{
|
||
|
k = a[i];
|
||
|
_fmpq_poly_compose_series(T, Tden, Q, Qden, k, Qinv, den, k, k);
|
||
|
_fmpq_poly_derivative(U, Uden, T, Tden, k); fmpz_zero(U + k - 1);
|
||
|
fmpz_zero(T + 1);
|
||
|
_fmpq_poly_div_series(V, Vden, T, Tden, U, Uden, k);
|
||
|
_fmpq_poly_canonicalise(V, Vden, k);
|
||
|
_fmpq_poly_derivative(T, Tden, Qinv, den, k);
|
||
|
_fmpq_poly_mullow(U, Uden, V, Vden, k, T, Tden, k, k);
|
||
|
_fmpq_poly_sub(Qinv, den, Qinv, den, k, U, Uden, k);
|
||
|
}
|
||
|
|
||
|
_fmpq_poly_canonicalise(Qinv, den, n);
|
||
|
|
||
|
flint_free(a);
|
||
|
_fmpz_vec_clear(T, n);
|
||
|
_fmpz_vec_clear(U, n);
|
||
|
_fmpz_vec_clear(V, n);
|
||
|
fmpz_clear(Tden);
|
||
|
fmpz_clear(Uden);
|
||
|
fmpz_clear(Vden);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
fmpq_poly_revert_series_newton(fmpq_poly_t res,
|
||
|
const fmpq_poly_t poly, slong n)
|
||
|
{
|
||
|
fmpz *copy;
|
||
|
int alloc;
|
||
|
|
||
|
if (poly->length < 2 || !fmpz_is_zero(poly->coeffs)
|
||
|
|| fmpz_is_zero(poly->coeffs + 1))
|
||
|
{
|
||
|
flint_printf("Exception (fmpq_poly_revert_series_newton). Input must have \n"
|
||
|
"zero constant term and nonzero coefficient of x^1.\n");
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
if (n < 2)
|
||
|
{
|
||
|
fmpq_poly_zero(res);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (poly->length >= n)
|
||
|
{
|
||
|
copy = poly->coeffs;
|
||
|
alloc = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
slong i;
|
||
|
copy = (fmpz *) flint_malloc(n * sizeof(fmpz));
|
||
|
for (i = 0; i < poly->length; i++)
|
||
|
copy[i] = poly->coeffs[i];
|
||
|
for ( ; i < n; i++)
|
||
|
copy[i] = 0;
|
||
|
alloc = 1;
|
||
|
}
|
||
|
|
||
|
if (res != poly)
|
||
|
{
|
||
|
fmpq_poly_fit_length(res, n);
|
||
|
_fmpq_poly_revert_series_newton(res->coeffs,
|
||
|
res->den, copy, poly->den, n);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fmpq_poly_t t;
|
||
|
fmpq_poly_init2(t, n);
|
||
|
_fmpq_poly_revert_series_newton(t->coeffs,
|
||
|
t->den, copy, poly->den, n);
|
||
|
fmpq_poly_swap(res, t);
|
||
|
fmpq_poly_clear(t);
|
||
|
}
|
||
|
|
||
|
_fmpq_poly_set_length(res, n);
|
||
|
_fmpq_poly_normalise(res);
|
||
|
|
||
|
if (alloc)
|
||
|
flint_free(copy);
|
||
|
}
|