1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A collection of numeric types and traits for Rust. //! //! This includes new types for big integers, rationals, and complex numbers, //! new traits for generic programming on numeric properties like `Integer`, //! and generic range iterators. //! //! ## Example //! //! This example uses the BigRational type and [Newton's method][newt] to //! approximate a square root to arbitrary precision: //! //! ``` //! extern crate num; //! # #[cfg(all(feature = "bigint", feature="rational"))] //! # mod test { //! //! use num::FromPrimitive; //! use num::bigint::BigInt; //! use num::rational::{Ratio, BigRational}; //! //! # pub //! fn approx_sqrt(number: u64, iterations: usize) -> BigRational { //! let start: Ratio<BigInt> = Ratio::from_integer(FromPrimitive::from_u64(number).unwrap()); //! let mut approx = start.clone(); //! //! for _ in 0..iterations { //! approx = (&approx + (&start / &approx)) / //! Ratio::from_integer(FromPrimitive::from_u64(2).unwrap()); //! } //! //! approx //! } //! # } //! # #[cfg(not(all(feature = "bigint", feature="rational")))] //! # mod test { pub fn approx_sqrt(n: u64, _: usize) -> u64 { n } } //! # use test::approx_sqrt; //! //! fn main() { //! println!("{}", approx_sqrt(10, 4)); // prints 4057691201/1283082416 //! } //! //! ``` //! //! [newt]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method #![doc(html_logo_url = "https://rust-num.github.io/num/rust-logo-128x128-blk-v2.png", html_favicon_url = "https://rust-num.github.io/num/favicon.ico", html_root_url = "https://rust-num.github.io/num/", html_playground_url = "http://play.integer32.com/")] extern crate num_traits; extern crate num_integer; extern crate num_iter; #[cfg(feature = "num-complex")] extern crate num_complex; #[cfg(feature = "num-bigint")] extern crate num_bigint; #[cfg(feature = "num-rational")] extern crate num_rational; #[cfg(feature = "num-bigint")] pub use num_bigint::{BigInt, BigUint}; #[cfg(feature = "num-rational")] pub use num_rational::Rational; #[cfg(all(feature = "num-rational", feature="num-bigint"))] pub use num_rational::BigRational; #[cfg(feature = "num-complex")] pub use num_complex::Complex; pub use num_integer::Integer; pub use num_iter::{range, range_inclusive, range_step, range_step_inclusive}; pub use num_traits::{Num, Zero, One, Signed, Unsigned, Bounded, one, zero, abs, abs_sub, signum, Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, PrimInt, Float, ToPrimitive, FromPrimitive, NumCast, cast, pow, checked_pow, clamp}; #[cfg(feature = "num-bigint")] pub mod bigint { pub use num_bigint::*; } #[cfg(feature = "num-complex")] pub mod complex { pub use num_complex::*; } pub mod integer { pub use num_integer::*; } pub mod iter { pub use num_iter::*; } pub mod traits { pub use num_traits::*; } #[cfg(feature = "num-rational")] pub mod rational { pub use num_rational::*; }