1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
/*!
An implementation of the
[Aho-Corasick string search algorithm](https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_string_matching_algorithm).

The Aho-Corasick algorithm is principally useful when you need to search many
large texts for a fixed (possibly large) set of keywords. In particular, the
Aho-Corasick algorithm preprocesses the set of keywords by constructing a
finite state machine. The search phase is then a quick linear scan through the
text. Each character in the search text causes a state transition in the
automaton. Matches are reported when the automaton enters a match state.

# Examples

The main type exposed by this crate is `AcAutomaton`, which can be constructed
from an iterator of pattern strings:

```rust
use aho_corasick::{Automaton, AcAutomaton};

let aut = AcAutomaton::new(vec!["apple", "maple"]);

// AcAutomaton also implements `FromIterator`:
let aut: AcAutomaton<&str> = ["apple", "maple"].iter().cloned().collect();
```

Finding matches can be done with `find`:

```rust
use aho_corasick::{Automaton, AcAutomaton, Match};

let aut = AcAutomaton::new(vec!["apple", "maple"]);
let mut it = aut.find("I like maple apples.");
assert_eq!(it.next(), Some(Match {
    pati: 1,
    start: 7,
    end: 12,
}));
assert_eq!(it.next(), Some(Match {
    pati: 0,
    start: 13,
    end: 18,
}));
assert_eq!(it.next(), None);
```

Use `find_overlapping` if you want to report all matches, even if they
overlap with each other.

```rust
use aho_corasick::{Automaton, AcAutomaton, Match};

let aut = AcAutomaton::new(vec!["abc", "a"]);
let matches: Vec<_> = aut.find_overlapping("abc").collect();
assert_eq!(matches, vec![
    Match { pati: 1, start: 0, end: 1}, Match { pati: 0, start: 0, end: 3 },
]);

// Regular `find` will report only one match:
let matches: Vec<_> = aut.find("abc").collect();
assert_eq!(matches, vec![Match { pati: 1, start: 0, end: 1}]);
```

Finally, there are also methods for finding matches on *streams*. Namely, the
search text does not have to live in memory. It's useful to run this on files
that can't fit into memory:

```no_run
use std::fs::File;

use aho_corasick::{Automaton, AcAutomaton};

let aut = AcAutomaton::new(vec!["foo", "bar", "baz"]);
let rdr = File::open("search.txt").unwrap();
for m in aut.stream_find(rdr) {
    let m = m.unwrap(); // could be an IO error
    println!("Pattern '{}' matched at: ({}, {})",
             aut.pattern(m.pati), m.start, m.end);
}
```

There is also `stream_find_overlapping`, which is just like `find_overlapping`,
but it operates on streams.

Please see `dict-search.rs` in this crate's `examples` directory for a more
complete example. It creates a large automaton from a dictionary and can do a
streaming match over arbitrarily large data.

# Memory usage

A key aspect of an Aho-Corasick implementation is how the state transitions
are represented. The easiest way to make the automaton fast is to store a
sparse 256-slot map in each state. It maps an input byte to a state index.
This makes the matching loop extremely fast, since it translates to a simple
pointer read.

The problem is that as the automaton accumulates more states, you end up paying
a `256 * 4` (`4` is for the `u32` state index) byte penalty for every state
regardless of how many transitions it has.

To solve this, only states near the root of the automaton have this sparse
map representation. States near the leaves of the automaton use a dense mapping
that requires a linear scan.

(The specific limit currently set is `3`, so that states with a depth less than
or equal to `3` are less memory efficient. The result is that the memory usage
of the automaton stops growing rapidly past ~60MB, even for automatons with
thousands of patterns.)

If you'd like to opt for the less-memory-efficient-but-faster version, then
you can construct an `AcAutomaton` with a `Sparse` transition strategy:

```rust
use aho_corasick::{Automaton, AcAutomaton, Match, Sparse};

let aut = AcAutomaton::<&str, Sparse>::with_transitions(vec!["abc", "a"]);
let matches: Vec<_> = aut.find("abc").collect();
assert_eq!(matches, vec![Match { pati: 1, start: 0, end: 1}]);
```
*/

#![deny(missing_docs)]

extern crate memchr;
#[cfg(test)] extern crate quickcheck;
#[cfg(test)] extern crate rand;

use std::collections::VecDeque;
use std::fmt;
use std::iter::FromIterator;
use std::mem;

pub use self::autiter::{
    Automaton, Match,
    Matches, MatchesOverlapping, StreamMatches, StreamMatchesOverlapping,
};
pub use self::full::FullAcAutomaton;

// We're specifying paths explicitly so that we can use
// these modules simultaneously from `main.rs`.
// Should probably make just make `main.rs` a separate crate.
#[path = "autiter.rs"]
mod autiter;
#[path = "full.rs"]
mod full;

/// The integer type used for the state index.
///
/// Limiting this to 32 bit integers can have a big impact on memory usage
/// when using the `Sparse` transition representation.
pub type StateIdx = u32;

// Constants for special state indexes.
const FAIL_STATE: u32 = 0;
const ROOT_STATE: u32 = 1;

// Limit the depth at which we use a sparse alphabet map. Once the limit is
// reached, a dense set is used (and lookup becomes O(n)).
//
// This does have a performance hit, but the (straight forward) alternative
// is to have a `256 * 4` byte overhead for every state.
// Given that Aho-Corasick is typically used for dictionary searching, this
// can lead to dramatic memory bloat.
//
// This limit should only be increased at your peril. Namely, in the worst
// case, `256^DENSE_DEPTH_THRESHOLD * 4` corresponds to the memory usage in
// bytes. A value of `1` gives us a good balance. This is also a happy point
// in the benchmarks. A value of `0` gives considerably worse times on certain
// benchmarks (e.g., `ac_ten_one_prefix_byte_every_match`) than even a value
// of `1`. A value of `2` is slightly better than `1` and it looks like gains
// level off at that point with not much observable difference when set to
// `3`.
//
// Why not make this user configurable? Well, it doesn't make much sense
// because we pay for it with case analysis in the matching loop. Increasing it
// doesn't have much impact on performance (outside of pathological cases?).
//
// N.B. Someone else seems to have discovered an alternative, but I haven't
// grokked it yet: https://github.com/mischasan/aho-corasick
const DENSE_DEPTH_THRESHOLD: u32 = 1;

/// An Aho-Corasick finite automaton.
///
/// The type parameter `P` is the type of the pattern that was used to
/// construct this AcAutomaton.
#[derive(Clone)]
pub struct AcAutomaton<P, T=Dense> {
    pats: Vec<P>,
    states: Vec<State<T>>,
    start_bytes: Vec<u8>,
}

#[derive(Clone)]
struct State<T> {
    out: Vec<usize>,
    fail: StateIdx,
    goto: T,
    depth: u32,
}

impl<P: AsRef<[u8]>> AcAutomaton<P> {
    /// Create a new automaton from an iterator of patterns.
    ///
    /// The patterns must be convertible to bytes (`&[u8]`) via the `AsRef`
    /// trait.
    pub fn new<I>(pats: I) -> AcAutomaton<P, Dense>
            where I: IntoIterator<Item=P> {
        AcAutomaton::with_transitions(pats)
    }
}

impl<P: AsRef<[u8]>, T: Transitions> AcAutomaton<P, T> {
    /// Create a new automaton from an iterator of patterns.
    ///
    /// This constructor allows one to choose the transition representation.
    ///
    /// The patterns must be convertible to bytes (`&[u8]`) via the `AsRef`
    /// trait.
    pub fn with_transitions<I>(pats: I) -> AcAutomaton<P, T>
            where I: IntoIterator<Item=P> {
        AcAutomaton {
            pats: vec![], // filled in later, avoid wrath of borrow checker
            states: vec![State::new(0), State::new(0)], // empty and root
            start_bytes: vec![], // also filled in later
        }.build(pats.into_iter().collect())
    }

    /// Build out the entire automaton into a single matrix.
    ///
    /// This will make searching as fast as possible at the expense of using
    /// at least `4 * 256 * #states` bytes of memory.
    pub fn into_full(self) -> FullAcAutomaton<P> {
        FullAcAutomaton::new(self)
    }

    #[doc(hidden)]
    pub fn num_states(&self) -> usize {
        self.states.len()
    }

    #[doc(hidden)]
    pub fn heap_bytes(&self) -> usize {
        self.pats.iter()
            .map(|p| mem::size_of::<P>() + p.as_ref().len())
            .fold(0, |a, b| a + b)
        + self.states.iter()
              .map(|s| mem::size_of::<State<T>>() + s.heap_bytes())
              .fold(0, |a, b| a + b)
        + self.start_bytes.len()
    }
}

impl<P: AsRef<[u8]>, T: Transitions> Automaton<P> for AcAutomaton<P, T> {
    #[inline]
    fn next_state(&self, mut si: StateIdx, b: u8) -> StateIdx {
        loop {
            let maybe_si = self.states[si as usize].goto(b);
            if maybe_si != FAIL_STATE {
                si = maybe_si;
                break;
            } else {
                si = self.states[si as usize].fail;
            }
        }
        si
    }

    #[inline]
    fn get_match(&self, si: StateIdx, outi: usize, texti: usize) -> Match {
        let pati = self.states[si as usize].out[outi];
        let patlen = self.pats[pati].as_ref().len();
        let start = texti + 1 - patlen;
        Match {
            pati: pati,
            start: start,
            end: start + patlen,
        }
    }

    #[inline]
    fn has_match(&self, si: StateIdx, outi: usize) -> bool {
        outi < self.states[si as usize].out.len()
    }

    #[inline]
    fn start_bytes(&self) -> &[u8] {
        &self.start_bytes
    }

    #[inline]
    fn patterns(&self) -> &[P] {
        &self.pats
    }

    #[inline]
    fn pattern(&self, i: usize) -> &P {
        &self.pats[i]
    }
}

// Below contains code for *building* the automaton. It's a reasonably faithful
// translation of the description/psuedo-code from:
// http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf

impl<P: AsRef<[u8]>, T: Transitions> AcAutomaton<P, T> {
    // This is the first phase and builds the initial keyword tree.
    fn build(mut self, pats: Vec<P>) -> AcAutomaton<P, T> {
        for (pati, pat) in pats.iter().enumerate() {
            if pat.as_ref().is_empty() {
                continue;
            }
            let mut previ = ROOT_STATE;
            for &b in pat.as_ref() {
                if self.states[previ as usize].goto(b) != FAIL_STATE {
                    previ = self.states[previ as usize].goto(b);
                } else {
                    let depth = self.states[previ as usize].depth + 1;
                    let nexti = self.add_state(State::new(depth));
                    self.states[previ as usize].set_goto(b, nexti);
                    previ = nexti;
                }
            }
            self.states[previ as usize].out.push(pati);
        }
        for c in (0..256).into_iter().map(|c| c as u8) {
            if self.states[ROOT_STATE as usize].goto(c) == FAIL_STATE {
                self.states[ROOT_STATE as usize].set_goto(c, ROOT_STATE);
            } else {
                self.start_bytes.push(c);
            }
        }
        // If any of the start bytes are non-ASCII, then remove them all,
        // because we don't want to be calling memchr on non-ASCII bytes.
        // (Well, we could, but it requires being more clever. Simply using
        // the prefix byte isn't good enough.)
        if self.start_bytes.iter().any(|&b| b > 0x7F) {
            self.start_bytes.clear();
        }
        self.pats = pats;
        self.fill()
    }

    // The second phase that fills in the back links.
    fn fill(mut self) -> AcAutomaton<P, T> {
        // Fill up the queue with all non-root transitions out of the root
        // node. Then proceed by breadth first traversal.
        let mut q = VecDeque::new();
        for c in (0..256).into_iter().map(|c| c as u8) {
            let si = self.states[ROOT_STATE as usize].goto(c);
            if si != ROOT_STATE {
                q.push_front(si);
            }
        }
        while let Some(si) = q.pop_back() {
            for c in (0..256).into_iter().map(|c| c as u8) {
                let u = self.states[si as usize].goto(c);
                if u != FAIL_STATE {
                    q.push_front(u);
                    let mut v = self.states[si as usize].fail;
                    while self.states[v as usize].goto(c) == FAIL_STATE {
                        v = self.states[v as usize].fail;
                    }
                    let ufail = self.states[v as usize].goto(c);
                    self.states[u as usize].fail = ufail;
                    let ufail_out = self.states[ufail as usize].out.clone();
                    self.states[u as usize].out.extend(ufail_out);
                }
            }
        }
        self
    }

    fn add_state(&mut self, state: State<T>) -> StateIdx {
        let i = self.states.len();
        self.states.push(state);
        i as StateIdx
    }
}

impl<T: Transitions> State<T> {
    fn new(depth: u32) -> State<T> {
        State {
            out: vec![],
            fail: 1,
            goto: Transitions::new(depth),
            depth: depth,
        }
    }

    fn goto(&self, b: u8) -> StateIdx {
        self.goto.goto(b)
    }

    fn set_goto(&mut self, b: u8, si: StateIdx) {
        self.goto.set_goto(b, si);
    }

    fn heap_bytes(&self) -> usize {
        (self.out.len() * usize_bytes())
        + self.goto.heap_bytes()
    }
}

/// An abstraction over state transition strategies.
///
/// This is an attempt to let the caller choose the space/time trade offs
/// used for state transitions.
///
/// (It's possible that this interface is merely good enough for just the two
/// implementations in this crate.)
pub trait Transitions {
    /// Return a new state at the given depth.
    fn new(depth: u32) -> Self;
    /// Return the next state index given the next character.
    fn goto(&self, alpha: u8) -> StateIdx;
    /// Set the next state index for the character given.
    fn set_goto(&mut self, alpha: u8, si: StateIdx);
    /// The memory use in bytes (on the heap) of this set of transitions.
    fn heap_bytes(&self) -> usize;
}

/// State transitions that can be stored either sparsely or densely.
///
/// This uses less space but at the expense of slower matching.
#[derive(Clone, Debug)]
pub struct Dense(DenseChoice);

#[derive(Clone, Debug)]
enum DenseChoice {
    Sparse(Vec<StateIdx>), // indexed by alphabet
    Dense(Vec<(u8, StateIdx)>),
}

impl Transitions for Dense {
    fn new(depth: u32) -> Dense {
        if depth <= DENSE_DEPTH_THRESHOLD {
            Dense(DenseChoice::Sparse(vec![0; 256]))
        } else {
            Dense(DenseChoice::Dense(vec![]))
        }
    }

    fn goto(&self, b1: u8) -> StateIdx {
        match self.0 {
            DenseChoice::Sparse(ref m) => m[b1 as usize],
            DenseChoice::Dense(ref m) => {
                for &(b2, si) in m {
                    if b1 == b2 {
                        return si;
                    }
                }
                FAIL_STATE
            }
        }
    }

    fn set_goto(&mut self, b: u8, si: StateIdx) {
        match self.0 {
            DenseChoice::Sparse(ref mut m) => m[b as usize] = si,
            DenseChoice::Dense(ref mut m) => m.push((b, si)),
        }
    }

    fn heap_bytes(&self) -> usize {
        match self.0 {
            DenseChoice::Sparse(ref m) => m.len() * 4,
            DenseChoice::Dense(ref m) => m.len() * (1 + 4),
        }
    }
}

/// State transitions that are always sparse.
///
/// This can use enormous amounts of memory when there are many patterns,
/// but matching is very fast.
#[derive(Clone, Debug)]
pub struct Sparse(Vec<StateIdx>);

impl Transitions for Sparse {
    fn new(_: u32) -> Sparse {
        Sparse(vec![0; 256])
    }

    #[inline]
    fn goto(&self, b: u8) -> StateIdx {
        self.0[b as usize]
    }

    fn set_goto(&mut self, b: u8, si: StateIdx) {
        self.0[b as usize] = si;
    }

    fn heap_bytes(&self) -> usize {
        self.0.len() * 4
    }
}

impl<S: AsRef<[u8]>> FromIterator<S> for AcAutomaton<S> {
    /// Create an automaton from an iterator of strings.
    fn from_iter<T>(it: T) -> AcAutomaton<S> where T: IntoIterator<Item=S> {
        AcAutomaton::new(it)
    }
}

// Provide some question debug impls for viewing automatons.
// The custom impls mostly exist for special showing of sparse maps.

impl<P: AsRef<[u8]> + fmt::Debug, T: Transitions>
        fmt::Debug for AcAutomaton<P, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use std::iter::repeat;

        try!(writeln!(f, "{}", repeat('-').take(79).collect::<String>()));
        try!(writeln!(f, "Patterns: {:?}", self.pats));
        for (i, state) in self.states.iter().enumerate().skip(1) {
            try!(writeln!(f, "{:3}: {}", i, state.debug(i == 1)));
        }
        write!(f, "{}", repeat('-').take(79).collect::<String>())
    }
}

impl<T: Transitions> State<T> {
    fn debug(&self, root: bool) -> String {
        format!("State {{ depth: {:?}, out: {:?}, fail: {:?}, goto: {{{}}} }}",
                self.depth, self.out, self.fail, self.goto_string(root))
    }

    fn goto_string(&self, root: bool) -> String {
        use std::char::from_u32;

        let mut goto = vec![];
        for b in (0..256).map(|b| b as u8) {
            let si = self.goto(b);
            if (!root && si == FAIL_STATE) || (root && si == ROOT_STATE) {
                continue;
            }
            goto.push(format!("{} => {}", from_u32(b as u32).unwrap(), si));
        }
        goto.join(", ")
    }
}

impl<T: Transitions> fmt::Debug for State<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.debug(false))
    }
}

impl<T: Transitions> AcAutomaton<String, T> {
    #[doc(hidden)]
    pub fn dot(&self) -> String {
        use std::fmt::Write;
        let mut out = String::new();
        macro_rules! w {
            ($w:expr, $($tt:tt)*) => { {write!($w, $($tt)*)}.unwrap() }
        }

        w!(out, r#"
digraph automaton {{
    label=<<FONT POINT-SIZE="20">{}</FONT>>;
    labelloc="l";
    labeljust="l";
    rankdir="LR";
"#, self.pats.join(", "));
        for (i, s) in self.states.iter().enumerate().skip(1) {
            let i = i as u32;
            if s.out.len() == 0 {
                w!(out, "    {};\n", i);
            } else {
                w!(out, "    {} [peripheries=2];\n", i);
            }
            w!(out, "    {} -> {} [style=dashed];\n", i, s.fail);
            for b in (0..256).map(|b| b as u8) {
                let si = s.goto(b);
                if si == FAIL_STATE || (i == ROOT_STATE && si == ROOT_STATE) {
                    continue;
                }
                w!(out, "    {} -> {} [label={}];\n", i, si, b as char);
            }
        }
        w!(out, "}}");
        out
    }
}

fn vec_bytes() -> usize {
    usize_bytes() * 3
}

fn usize_bytes() -> usize {
    let bits = usize::max_value().count_ones() as usize;
    bits / 8
}

#[cfg(test)]
mod tests {
    use std::collections::HashSet;
    use std::io;

    use quickcheck::{Arbitrary, Gen, quickcheck};

    use super::{Automaton, AcAutomaton, Match};

    fn aut_find<S>(xs: &[S], haystack: &str) -> Vec<Match>
            where S: Clone + AsRef<[u8]> {
        AcAutomaton::new(xs.to_vec()).find(&haystack).collect()
    }

    fn aut_finds<S>(xs: &[S], haystack: &str) -> Vec<Match>
            where S: Clone + AsRef<[u8]> {
        let cur = io::Cursor::new(haystack.as_bytes());
        AcAutomaton::new(xs.to_vec())
            .stream_find(cur).map(|r| r.unwrap()).collect()
    }

    fn aut_findf<S>(xs: &[S], haystack: &str) -> Vec<Match>
            where S: Clone + AsRef<[u8]> {
        AcAutomaton::new(xs.to_vec()).into_full().find(haystack).collect()
    }

    fn aut_findfs<S>(xs: &[S], haystack: &str) -> Vec<Match>
            where S: Clone + AsRef<[u8]> {
        let cur = io::Cursor::new(haystack.as_bytes());
        AcAutomaton::new(xs.to_vec())
            .into_full()
            .stream_find(cur).map(|r| r.unwrap()).collect()
    }

    fn aut_findo<S>(xs: &[S], haystack: &str) -> Vec<Match>
            where S: Clone + AsRef<[u8]> {
        AcAutomaton::new(xs.to_vec()).find_overlapping(haystack).collect()
    }

    fn aut_findos<S>(xs: &[S], haystack: &str) -> Vec<Match>
            where S: Clone + AsRef<[u8]> {
        let cur = io::Cursor::new(haystack.as_bytes());
        AcAutomaton::new(xs.to_vec())
            .stream_find_overlapping(cur).map(|r| r.unwrap()).collect()
    }

    fn aut_findfo<S>(xs: &[S], haystack: &str) -> Vec<Match>
            where S: Clone + AsRef<[u8]> {
        AcAutomaton::new(xs.to_vec())
            .into_full().find_overlapping(haystack).collect()
    }

    fn aut_findfos<S>(xs: &[S], haystack: &str) -> Vec<Match>
            where S: Clone + AsRef<[u8]> {
        let cur = io::Cursor::new(haystack.as_bytes());
        AcAutomaton::new(xs.to_vec())
            .into_full()
            .stream_find_overlapping(cur).map(|r| r.unwrap()).collect()
    }

    #[test]
    fn one_pattern_one_match() {
        let ns = vec!["a"];
        let hay = "za";
        let matches = vec![
            Match { pati: 0, start: 1, end: 2 },
        ];
        assert_eq!(&aut_find(&ns, hay), &matches);
        assert_eq!(&aut_finds(&ns, hay), &matches);
        assert_eq!(&aut_findf(&ns, hay), &matches);
        assert_eq!(&aut_findfs(&ns, hay), &matches);
    }

    #[test]
    fn one_pattern_many_match() {
        let ns = vec!["a"];
        let hay = "zazazzzza";
        let matches = vec![
            Match { pati: 0, start: 1, end: 2 },
            Match { pati: 0, start: 3, end: 4 },
            Match { pati: 0, start: 8, end: 9 },
        ];
        assert_eq!(&aut_find(&ns, hay), &matches);
        assert_eq!(&aut_finds(&ns, hay), &matches);
        assert_eq!(&aut_findf(&ns, hay), &matches);
        assert_eq!(&aut_findfs(&ns, hay), &matches);
    }

    #[test]
    fn one_longer_pattern_one_match() {
        let ns = vec!["abc"];
        let hay = "zazabcz";
        let matches = vec![ Match { pati: 0, start: 3, end: 6 } ];
        assert_eq!(&aut_find(&ns, hay), &matches);
        assert_eq!(&aut_finds(&ns, hay), &matches);
        assert_eq!(&aut_findf(&ns, hay), &matches);
        assert_eq!(&aut_findfs(&ns, hay), &matches);
    }

    #[test]
    fn one_longer_pattern_many_match() {
        let ns = vec!["abc"];
        let hay = "zazabczzzzazzzabc";
        let matches = vec![
            Match { pati: 0, start: 3, end: 6 },
            Match { pati: 0, start: 14, end: 17 },
        ];
        assert_eq!(&aut_find(&ns, hay), &matches);
        assert_eq!(&aut_finds(&ns, hay), &matches);
        assert_eq!(&aut_findf(&ns, hay), &matches);
        assert_eq!(&aut_findfs(&ns, hay), &matches);
    }

    #[test]
    fn many_pattern_one_match() {
        let ns = vec!["a", "b"];
        let hay = "zb";
        let matches = vec![ Match { pati: 1, start: 1, end: 2 } ];
        assert_eq!(&aut_find(&ns, hay), &matches);
        assert_eq!(&aut_finds(&ns, hay), &matches);
        assert_eq!(&aut_findf(&ns, hay), &matches);
        assert_eq!(&aut_findfs(&ns, hay), &matches);
    }

    #[test]
    fn many_pattern_many_match() {
        let ns = vec!["a", "b"];
        let hay = "zbzazzzzb";
        let matches = vec![
            Match { pati: 1, start: 1, end: 2 },
            Match { pati: 0, start: 3, end: 4 },
            Match { pati: 1, start: 8, end: 9 },
        ];
        assert_eq!(&aut_find(&ns, hay), &matches);
        assert_eq!(&aut_finds(&ns, hay), &matches);
        assert_eq!(&aut_findf(&ns, hay), &matches);
        assert_eq!(&aut_findfs(&ns, hay), &matches);
    }

    #[test]
    fn many_longer_pattern_one_match() {
        let ns = vec!["abc", "xyz"];
        let hay = "zazxyzz";
        let matches = vec![ Match { pati: 1, start: 3, end: 6 } ];
        assert_eq!(&aut_find(&ns, hay), &matches);
        assert_eq!(&aut_finds(&ns, hay), &matches);
        assert_eq!(&aut_findf(&ns, hay), &matches);
        assert_eq!(&aut_findfs(&ns, hay), &matches);
    }

    #[test]
    fn many_longer_pattern_many_match() {
        let ns = vec!["abc", "xyz"];
        let hay = "zazxyzzzzzazzzabcxyz";
        let matches = vec![
            Match { pati: 1, start: 3, end: 6 },
            Match { pati: 0, start: 14, end: 17 },
            Match { pati: 1, start: 17, end: 20 },
        ];
        assert_eq!(&aut_find(&ns, hay), &matches);
        assert_eq!(&aut_finds(&ns, hay), &matches);
        assert_eq!(&aut_findf(&ns, hay), &matches);
        assert_eq!(&aut_findfs(&ns, hay), &matches);
    }

    #[test]
    fn many_longer_pattern_overlap_one_match() {
        let ns = vec!["abc", "bc"];
        let hay = "zazabcz";
        let matches = vec![
            Match { pati: 0, start: 3, end: 6 },
            Match { pati: 1, start: 4, end: 6 },
        ];
        assert_eq!(&aut_findo(&ns, hay), &matches);
        assert_eq!(&aut_findos(&ns, hay), &matches);
        assert_eq!(&aut_findfo(&ns, hay), &matches);
        assert_eq!(&aut_findfos(&ns, hay), &matches);
    }

    #[test]
    fn many_longer_pattern_overlap_one_match_reverse() {
        let ns = vec!["abc", "bc"];
        let hay = "xbc";
        let matches = vec![ Match { pati: 1, start: 1, end: 3 } ];
        assert_eq!(&aut_findo(&ns, hay), &matches);
        assert_eq!(&aut_findos(&ns, hay), &matches);
        assert_eq!(&aut_findfo(&ns, hay), &matches);
        assert_eq!(&aut_findfos(&ns, hay), &matches);
    }

    #[test]
    fn many_longer_pattern_overlap_many_match() {
        let ns = vec!["abc", "bc", "c"];
        let hay = "zzzabczzzbczzzc";
        let matches = vec![
            Match { pati: 0, start: 3, end: 6 },
            Match { pati: 1, start: 4, end: 6 },
            Match { pati: 2, start: 5, end: 6 },
            Match { pati: 1, start: 9, end: 11 },
            Match { pati: 2, start: 10, end: 11 },
            Match { pati: 2, start: 14, end: 15 },
        ];
        assert_eq!(&aut_findo(&ns, hay), &matches);
        assert_eq!(&aut_findos(&ns, hay), &matches);
        assert_eq!(&aut_findfo(&ns, hay), &matches);
        assert_eq!(&aut_findfos(&ns, hay), &matches);
    }

    #[test]
    fn many_longer_pattern_overlap_many_match_reverse() {
        let ns = vec!["abc", "bc", "c"];
        let hay = "zzzczzzbczzzabc";
        let matches = vec![
            Match { pati: 2, start: 3, end: 4 },
            Match { pati: 1, start: 7, end: 9 },
            Match { pati: 2, start: 8, end: 9 },
            Match { pati: 0, start: 12, end: 15 },
            Match { pati: 1, start: 13, end: 15 },
            Match { pati: 2, start: 14, end: 15 },
        ];
        assert_eq!(&aut_findo(&ns, hay), &matches);
        assert_eq!(&aut_findos(&ns, hay), &matches);
        assert_eq!(&aut_findfo(&ns, hay), &matches);
        assert_eq!(&aut_findfos(&ns, hay), &matches);
    }

    #[test]
    fn pattern_returns_original_type() {
        let aut = AcAutomaton::new(vec!["apple", "maple"]);

        // Explicitly given this type to assert that the thing returned
        // from the function is our original type.
        let pat: &str = aut.pattern(0);
        assert_eq!(pat, "apple");

        // Also check the return type of the `patterns` function.
        let pats: &[&str] = aut.patterns();
        assert_eq!(pats, &["apple", "maple"]);
    }

    // Quickcheck time.

    // This generates very small ascii strings, which makes them more likely
    // to interact in interesting ways with larger haystack strings.
    #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
    pub struct SmallAscii(String);

    impl Arbitrary for SmallAscii {
        fn arbitrary<G: Gen>(g: &mut G) -> SmallAscii {
            use std::char::from_u32;
            SmallAscii((0..2)
                       .map(|_| from_u32(g.gen_range(97, 123)).unwrap())
                       .collect())
        }

        fn shrink(&self) -> Box<Iterator<Item=SmallAscii>> {
            Box::new(self.0.shrink().map(SmallAscii))
        }
    }

    impl From<SmallAscii> for String {
        fn from(s: SmallAscii) -> String { s.0 }
    }

    impl AsRef<[u8]> for SmallAscii {
        fn as_ref(&self) -> &[u8] { self.0.as_ref() }
    }

    // This is the same arbitrary impl as `String`, except it has a bias toward
    // ASCII characters.
    #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
    pub struct BiasAscii(String);

    impl Arbitrary for BiasAscii {
        fn arbitrary<G: Gen>(g: &mut G) -> BiasAscii {
            use std::char::from_u32;
            let size = { let s = g.size(); g.gen_range(0, s) };
            let mut s = String::with_capacity(size);
            for _ in 0..size {
                if g.gen_weighted_bool(3) {
                    s.push(char::arbitrary(g));
                } else {
                    for _ in 0..5 {
                        s.push(from_u32(g.gen_range(97, 123)).unwrap());
                    }
                }
            }
            BiasAscii(s)
        }

        fn shrink(&self) -> Box<Iterator<Item=BiasAscii>> {
            Box::new(self.0.shrink().map(BiasAscii))
        }
    }

    fn naive_find<S>(xs: &[S], haystack: &str) -> Vec<Match>
            where S: Clone + Into<String> {
        let needles: Vec<String> =
            xs.to_vec().into_iter().map(Into::into).collect();
        let mut matches = vec![];
        for hi in 0..haystack.len() {
            for (pati, needle) in needles.iter().enumerate() {
                let needle = needle.as_bytes();
                if needle.len() == 0 || needle.len() > haystack.len() - hi {
                    continue;
                }
                if needle == &haystack.as_bytes()[hi..hi+needle.len()] {
                    matches.push(Match {
                        pati: pati,
                        start: hi,
                        end: hi + needle.len(),
                    });
                }
            }
        }
        matches
    }

    #[test]
    fn qc_ac_equals_naive() {
        fn prop(needles: Vec<SmallAscii>, haystack: BiasAscii) -> bool {
            let aut_matches = aut_findo(&needles, &haystack.0);
            let naive_matches = naive_find(&needles, &haystack.0);
            // Ordering isn't always the same. I don't think we care, so do
            // an unordered comparison.
            let aset: HashSet<Match> = aut_matches.iter().cloned().collect();
            let nset: HashSet<Match> = naive_matches.iter().cloned().collect();
            aset == nset
        }
        quickcheck(prop as fn(Vec<SmallAscii>, BiasAscii) -> bool);
    }
}