hpath/src/HPath.hs

304 lines
8.0 KiB
Haskell
Raw Normal View History

Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
-- |
-- Module : HPath
-- Copyright : © 20152016 FP Complete, 2016 Julian Ospald
-- License : BSD 3 clause
--
-- Maintainer : Julian Ospald <hasufell@posteo.de>
-- Stability : experimental
-- Portability : portable
--
-- Support for well-typed paths.
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE PatternSynonyms #-}
2016-03-30 00:47:42 +00:00
{-# LANGUAGE ForeignFunctionInterface #-}
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
{-# OPTIONS_HADDOCK ignore-exports #-}
module HPath
(
-- * Types
Abs
,Path
,Rel
2016-03-30 00:47:42 +00:00
,Fn
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
-- * PatternSynonyms/ViewPatterns
,pattern Path
-- * Parsing
,PathParseException
2016-03-30 00:47:42 +00:00
,parseAbs
,parseFn
,parseRel
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
-- * Constructors
2016-03-30 00:47:42 +00:00
,mkAbs
,mkFn
,mkRel
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
-- * Operations
,(</>)
,basename
,dirname
,isParentOf
,stripDir
-- * Conversion
2016-03-30 00:47:42 +00:00
,canonicalizePath
,fromAbs
,fromRel
,normalize
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
,toFilePath
2016-03-30 00:47:42 +00:00
-- * Queries
,hasDot
,hasDoublePS
,hasParentDir
,isFileName
-- * String based functions
,realPath
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
)
where
import Control.Exception (Exception)
2016-03-30 00:47:42 +00:00
import Control.Monad(void)
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
import Control.Monad.Catch (MonadThrow(..))
import Data.Data
import Data.List
import Data.Maybe
2016-03-30 00:47:42 +00:00
import Foreign.C.Error
import Foreign.C.String
import Foreign.Marshal.Alloc(allocaBytes)
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
import Language.Haskell.TH
2016-03-30 00:47:42 +00:00
import HPath.Foreign
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
import HPath.Internal
import qualified System.FilePath as FilePath
--------------------------------------------------------------------------------
-- Types
-- | An absolute path.
data Abs deriving (Typeable)
-- | A relative path; one without a root.
data Rel deriving (Typeable)
2016-03-30 00:47:42 +00:00
-- | A filename, without any '/'.
data Fn deriving (Typeable)
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
-- | Exception when parsing a location.
data PathParseException
2016-03-30 00:47:42 +00:00
= InvalidAbs FilePath
| InvalidRel FilePath
| InvalidFn FilePath
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
| Couldn'tStripPrefixTPS FilePath FilePath
deriving (Show,Typeable)
instance Exception PathParseException
2016-03-30 00:47:42 +00:00
instance RelC Rel
instance RelC Fn
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
--------------------------------------------------------------------------------
-- PatternSynonyms
pattern Path x <- (MkPath x)
--------------------------------------------------------------------------------
-- Parsers
2016-03-30 00:47:42 +00:00
-- | Get a location for an absolute path.
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
--
-- Throws: 'PathParseException'
--
2016-03-30 00:47:42 +00:00
parseAbs :: MonadThrow m
=> FilePath -> m (Path Abs)
parseAbs filepath =
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
if FilePath.isAbsolute filepath &&
2016-03-30 00:47:42 +00:00
not (null filepath) &&
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
FilePath.isValid filepath
2016-03-30 00:47:42 +00:00
then return (MkPath filepath)
else throwM (InvalidAbs filepath)
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
-- | Get a location for a relative path. Produces a normalized
-- path which always ends in a path separator.
--
-- Note that @filepath@ may contain any number of @./@ but may not consist
-- solely of @./@. It also may not contain a single @..@ anywhere.
--
-- Throws: 'PathParseException'
--
2016-03-30 00:47:42 +00:00
parseRel :: MonadThrow m
=> FilePath -> m (Path Rel)
parseRel filepath =
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
if not (FilePath.isAbsolute filepath) &&
not (null filepath) &&
FilePath.isValid filepath
2016-03-30 00:47:42 +00:00
then return (MkPath filepath)
else throwM (InvalidRel filepath)
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
2016-03-30 00:47:42 +00:00
parseFn :: MonadThrow m
=> FilePath -> m (Path Fn)
parseFn filepath =
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
if not (FilePath.isAbsolute filepath) &&
not (null filepath) &&
2016-03-30 00:47:42 +00:00
isFileName filepath &&
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
FilePath.isValid filepath
2016-03-30 00:47:42 +00:00
then return (MkPath filepath)
else throwM (InvalidFn filepath)
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
--------------------------------------------------------------------------------
-- Constructors
-- | Make a 'Path Abs TPS'.
--
-- Remember: due to the nature of absolute paths this (e.g. @\/home\/foo@)
-- may compile on your platform, but it may not compile on another
-- platform (Windows).
2016-03-30 00:47:42 +00:00
mkAbs :: FilePath -> Q Exp
mkAbs s =
case parseAbs s of
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
Left err -> error (show err)
Right (MkPath str) ->
2016-03-30 00:47:42 +00:00
[|MkPath $(return (LitE (StringL str))) :: Path Abs|]
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
-- | Make a 'Path Rel TPS'.
2016-03-30 00:47:42 +00:00
mkRel :: FilePath -> Q Exp
mkRel s =
case parseRel s of
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
Left err -> error (show err)
Right (MkPath str) ->
2016-03-30 00:47:42 +00:00
[|MkPath $(return (LitE (StringL str))) :: Path Rel|]
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
2016-03-30 00:47:42 +00:00
-- | Make a 'Path Rel TPS'.
mkFn :: FilePath -> Q Exp
mkFn s =
case parseFn s of
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
Left err -> error (show err)
Right (MkPath str) ->
2016-03-30 00:47:42 +00:00
[|MkPath $(return (LitE (StringL str))) :: Path Fn|]
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
--------------------------------------------------------------------------------
-- Conversion
-- | Convert to a 'FilePath' type.
--
-- All TPS data types have a trailing slash, so if you want no trailing
-- slash, you can use 'System.FilePath.dropTrailingPathSeparator' from
-- the filepath package.
2016-03-30 00:47:42 +00:00
toFilePath :: Path b -> FilePath
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
toFilePath (MkPath l) = l
2016-03-30 00:47:42 +00:00
fromAbs :: Path Abs -> FilePath
fromAbs = toFilePath
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
2016-03-30 00:47:42 +00:00
fromRel :: RelC r => Path r -> FilePath
fromRel = toFilePath
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
2016-03-30 00:47:42 +00:00
normalize :: Path t -> Path t
normalize (MkPath l) = MkPath $ FilePath.normalise l
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
2016-03-30 00:47:42 +00:00
-- | May fail on `realPath`.
canonicalizePath :: Path Abs -> IO (Path Abs)
canonicalizePath (MkPath l) = do
nl <- realPath l
return $ MkPath nl
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
--------------------------------------------------------------------------------
-- Operations
-- | Append two paths.
--
-- The second argument must always be a relative path, which ensures
-- that undefinable things like `"/abc" </> "/def"` cannot happen.
--
-- Technically, the first argument can be a path that points to a non-directory,
-- because this library is IO-agnostic and makes no assumptions about
-- file types.
2016-03-30 00:47:42 +00:00
(</>) :: RelC r => Path b -> Path r -> Path b
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
(</>) (MkPath a) (MkPath b) = MkPath (a' ++ b)
where
a' = FilePath.addTrailingPathSeparator a
-- | Strip directory from path, making it relative to that directory.
-- Throws 'Couldn'tStripPrefixDir' if directory is not a parent of the path.
--
-- The bases must match.
--
stripDir :: MonadThrow m
2016-03-30 00:47:42 +00:00
=> Path b -> Path b -> m (Path Rel)
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
stripDir (MkPath p) (MkPath l) =
case stripPrefix p' l of
Nothing -> throwM (Couldn'tStripPrefixTPS p' l)
Just "" -> throwM (Couldn'tStripPrefixTPS p' l)
Just ok -> return (MkPath ok)
where
p' = FilePath.addTrailingPathSeparator p
-- | Is p a parent of the given location? Implemented in terms of
-- 'stripDir'. The bases must match.
2016-03-30 00:47:42 +00:00
isParentOf :: Path b -> Path b -> Bool
isParentOf p l = isJust (stripDir p l :: Maybe (Path Rel))
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
-- | Extract the directory name of a path.
--
-- The following properties hold:
--
-- @dirname (p \<\/> a) == dirname p@
--
2016-03-30 00:47:42 +00:00
dirname :: Path Abs -> Path Abs
dirname (MkPath fp) = MkPath (FilePath.takeDirectory $ FilePath.dropTrailingPathSeparator fp)
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
-- | Extract the file part of a path.
--
--
-- The following properties hold:
--
-- @basename (p \<\/> a) == basename a@
--
2016-03-30 00:47:42 +00:00
-- Except when "/" is passed in which case the filename "." is returned.
basename :: Path b -> Path Fn
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
basename (MkPath l)
2016-03-30 00:47:42 +00:00
| not (FilePath.isAbsolute rl) = MkPath rl
| otherwise = MkPath "."
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
where
2016-03-30 00:47:42 +00:00
rl = last . FilePath.splitPath . FilePath.dropTrailingPathSeparator $ l
--------------------------------------------------------------------------------
-- Query functions
-- | Helper function: check if the filepath has any parent directories in it.
hasParentDir :: FilePath -> Bool
hasParentDir filepath =
("/.." `isSuffixOf` filepath) ||
("/../" `isInfixOf` filepath) ||
("../" `isPrefixOf` filepath)
hasDot :: FilePath -> Bool
hasDot filepath =
("/." `isSuffixOf` filepath) ||
("/./" `isInfixOf` filepath) ||
("./" `isPrefixOf` filepath)
hasDoublePS :: FilePath -> Bool
hasDoublePS filepath =
("//" `isInfixOf` filepath)
isFileName :: FilePath -> Bool
isFileName filepath =
not ("/" `isInfixOf` filepath)
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00
--------------------------------------------------------------------------------
2016-03-30 00:47:42 +00:00
-- String based path functions
foreign import ccall "realpath"
c_realpath :: CString -> CString -> IO CString
-- | return the canonicalized absolute pathname
--
-- like canonicalizePath, but uses realpath(3)
realPath :: String -> IO String
realPath inp = do
allocaBytes pathMax $ \tmp -> do
void $ withCString inp
$ \cstr -> throwErrnoIfNull "realpath"
$ c_realpath cstr tmp
peekCAString tmp
Fork chrisdone's path library I wasn't happy with the way it dealt with Dir vs File things. In his version of the library, a `Path b Dir` always ends with a trailing path separator and `Path b File` never ends with a trailing path separator. IMO, it is nonsensical to make a Dir vs File distinction on path level, although it first seems nice. Some of the reasons are: * a path is just that: a path. It is completely disconnected from IO level and even if a `Dir`/`File` type theoretically allows us to say "this path ought to point to a file", there is literally zero guarantee that it will hold true at runtime. So this basically gives a false feeling of a type-safe file distinction. * it's imprecise about Dir vs File distinction, which makes it even worse, because a directory is also a file (just not a regular file). Add symlinks to that and the confusion is complete. * it makes the API oddly complicated for use cases where we basically don't care (yet) whether something turns out to be a directory or not Still, it comes also with a few perks: * it simplifies some functions, because they now have guarantees whether a path ends in a trailing path separator or not * it may be safer for interaction with other library functions, which behave differently depending on a trailing path separator (like probably shelly) Not limited to, but also in order to fix my remarks without breaking any benefits, I did: * rename the `Dir`/`File` types to `TPS`/`NoTPS`, so it's clear we are only giving information about trailing path separators and not actual file types we don't know about yet * add a `MaybeTPS` type, which does not mess with trailing path separators and also gives no guarantees about them... then added `toNoTPS` and `toTPS` to allow type-safe conversion * make some functions accept more general types, so we don't unnecessarily force paths with trailing separators for `(</>)` for example... instead these functions now examine the paths to still have correct behavior. This is really minor overhead. You might say now "but then I can append filepath to filepath". Well, as I said... we don't know whether it's a "filepath" at all. * merge `filename` and `dirname` into `basename` and make `parent` be `dirname`, so the function names match the name of the POSIX ones, which do (almost) the same... * fix a bug in `basename` (formerly `dirname`) which broke the type guarantees * add a pattern synonym for easier pattern matching without exporting the internal Path constructor
2016-03-08 21:53:42 +00:00