Initial commit
This commit is contained in:
commit
2517e88d62
5
CHANGELOG.md
Normal file
5
CHANGELOG.md
Normal file
@ -0,0 +1,5 @@
|
||||
# Revision history for holmusk-challenge
|
||||
|
||||
## 0.0.0.1 -- YYYY-mm-dd
|
||||
|
||||
* First version. Released on an unsuspecting world.
|
26
Thoughts.md
Normal file
26
Thoughts.md
Normal file
@ -0,0 +1,26 @@
|
||||
# Thoughts
|
||||
|
||||
## Approach
|
||||
|
||||
1. write down the formulas, play with them a little
|
||||
2. figure out how to get average and maximum customer processing (not waiting) time
|
||||
3. figure out how to model queue length for average and maximum customer processing time
|
||||
4. use 1, 2. and 3. to model waiting times
|
||||
|
||||
## Queue length
|
||||
|
||||
The key is creating a model for the queue length. The easiest approach is to
|
||||
set a probability value x and say "a person appears at the bank when the
|
||||
probability is greater or equal to x". Then the probability drops to 0
|
||||
and increases over time until it hits x again.
|
||||
|
||||
Another possibility would be to generate a random number every second and
|
||||
compare it to the current probability of a person appearing.
|
||||
|
||||
## Waiting time
|
||||
|
||||
The waiting time depends on the queue length. The maximum waiting time
|
||||
is the time the person who came last has to wait wrt size of the max queue
|
||||
length (times max processing time).
|
||||
|
||||
Average is similar.
|
96
app/Main.hs
Normal file
96
app/Main.hs
Normal file
@ -0,0 +1,96 @@
|
||||
{-
|
||||
|
||||
Your task is to write a program that can outputs to stdout
|
||||
the answers to the following questions:
|
||||
|
||||
- Given only yellow customers, what are the average and maximum
|
||||
customer waiting times?
|
||||
- Given only red customers, what are the average and maximum queue
|
||||
lengths in-front of the teller?
|
||||
- Which type of customer(yellow, red or blue) gives the
|
||||
closest value between the average and maximum customer waiting times?
|
||||
|
||||
-}
|
||||
|
||||
|
||||
module Main where
|
||||
|
||||
import Holmusk
|
||||
|
||||
import Data.List
|
||||
import Options.Applicative
|
||||
import System.Random
|
||||
|
||||
|
||||
data Options = Options {
|
||||
interval :: Double
|
||||
}
|
||||
|
||||
|
||||
options :: Parser Options
|
||||
options =
|
||||
Options
|
||||
<$> (option
|
||||
auto
|
||||
( long "interval"
|
||||
<> short 'i'
|
||||
<> help "interval between checks in queueLengthR"
|
||||
<> showDefault
|
||||
<> value 0.1
|
||||
<> metavar "DOUBLE"
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
main :: IO ()
|
||||
main = do
|
||||
Options {..} <- execParser $ info
|
||||
(options <**> helper)
|
||||
(fullDesc <> progDesc "Run holmusk simulations")
|
||||
|
||||
-- Q1
|
||||
putStrLn
|
||||
"Given only yellow customers, what are the average and maximum customer waiting times?"
|
||||
g1 <- getStdGen
|
||||
g2 <- getStdGen
|
||||
let yAvgPt = avgCustomerProcTime Yellow
|
||||
yMaxPt = maxCustomerProcTime Yellow
|
||||
yAvgQl = queueLengthR yAvgPt interval g1
|
||||
yMaxQl = queueLengthR yMaxPt interval g2
|
||||
yAvgW = avgWaitingTime yAvgQl yAvgPt
|
||||
yMaxW = maxWaitingTime yMaxQl yMaxPt
|
||||
putStrLn $ "Avg: " ++ show yAvgW
|
||||
putStrLn $ "Max: " ++ show yMaxW
|
||||
putStrLn ""
|
||||
|
||||
-- Q2
|
||||
putStrLn
|
||||
"Given only red customers, what are the average and maximum queue lengths in-front of the teller?"
|
||||
g1 <- getStdGen
|
||||
g2 <- getStdGen
|
||||
let rAvgPt = avgCustomerProcTime Red
|
||||
rMaxPt = maxCustomerProcTime Red
|
||||
rAvgQl = queueLengthR rAvgPt interval g1
|
||||
rMaxQl = queueLengthR rMaxPt interval g2
|
||||
rAvgW = avgWaitingTime rAvgQl rAvgPt
|
||||
rMaxW = maxWaitingTime rMaxQl rMaxPt
|
||||
putStrLn $ "Avg: " ++ show rAvgQl
|
||||
putStrLn $ "Max: " ++ show rMaxQl
|
||||
putStrLn ""
|
||||
|
||||
-- Q3
|
||||
putStrLn
|
||||
"Which type of customer(yellow, red or blue) gives the closest value between the average and maximum customer waiting times?"
|
||||
g1 <- getStdGen
|
||||
g2 <- getStdGen
|
||||
let bAvgPt = avgCustomerProcTime Blue
|
||||
bMaxPt = maxCustomerProcTime Blue
|
||||
bAvgQl = queueLengthR bAvgPt interval g1
|
||||
bMaxQl = queueLengthR bMaxPt interval g2
|
||||
bAvgW = avgWaitingTime bAvgQl bAvgPt
|
||||
bMaxW = maxWaitingTime bMaxQl bMaxPt
|
||||
|
||||
let dist =
|
||||
[(Yellow, yMaxW - yAvgW), (Red, rMaxW - rAvgW), (Blue, bMaxW - bAvgW)]
|
||||
min = minimumBy (\(_, x) (_, y) -> compare x y) $ dist
|
||||
putStrLn (show min)
|
55
holmusk-challenge.cabal
Normal file
55
holmusk-challenge.cabal
Normal file
@ -0,0 +1,55 @@
|
||||
cabal-version: 2.4
|
||||
name: holmusk-challenge
|
||||
version: 0.0.0.1
|
||||
|
||||
-- synopsis:
|
||||
-- description:
|
||||
-- bug-reports:
|
||||
license: LicenseRef-LGPL-2
|
||||
license-file: LICENSE
|
||||
author: Julian Ospald
|
||||
maintainer: hasufell@posteo.de
|
||||
|
||||
-- copyright:
|
||||
category: Finance
|
||||
extra-source-files: CHANGELOG.md
|
||||
|
||||
library
|
||||
-- cabal-fmt: expand lib
|
||||
exposed-modules: Holmusk
|
||||
|
||||
-- other-modules:
|
||||
-- other-extensions:
|
||||
build-depends:
|
||||
, base ^>=4.13.0.0
|
||||
, random ^>=1.1
|
||||
|
||||
hs-source-dirs: lib
|
||||
default-language: Haskell2010
|
||||
default-extensions:
|
||||
LambdaCase
|
||||
MultiWayIf
|
||||
Strict
|
||||
StrictData
|
||||
|
||||
executable holmusk-challenge
|
||||
main-is: Main.hs
|
||||
|
||||
-- other-modules:
|
||||
-- other-extensions:
|
||||
build-depends:
|
||||
, base ^>=4.13.0.0
|
||||
, holmusk-challenge
|
||||
, optparse-applicative ^>=0.15
|
||||
, random ^>=1.1
|
||||
|
||||
hs-source-dirs: app
|
||||
default-language: Haskell2010
|
||||
default-extensions: RecordWildCards
|
||||
|
||||
test-suite holmusk-challenge-test
|
||||
default-language: Haskell2010
|
||||
type: exitcode-stdio-1.0
|
||||
hs-source-dirs: test
|
||||
main-is: MyLibTest.hs
|
||||
build-depends: base ^>=4.13.0.0
|
180
lib/Holmusk.hs
Normal file
180
lib/Holmusk.hs
Normal file
@ -0,0 +1,180 @@
|
||||
module Holmusk where
|
||||
|
||||
import Data.Maybe
|
||||
import System.Random
|
||||
|
||||
|
||||
data Customer = Yellow
|
||||
| Red
|
||||
| Blue
|
||||
deriving (Show, Eq)
|
||||
|
||||
|
||||
e :: Double
|
||||
e = exp 1
|
||||
|
||||
|
||||
|
||||
|
||||
--------------------
|
||||
--[ Given models ]--
|
||||
--------------------
|
||||
|
||||
|
||||
defAlpha :: Double
|
||||
defAlpha = 200
|
||||
|
||||
|
||||
-- | Probability that a customer arrives at any given time `t`.
|
||||
-- Converges to `1` over time.
|
||||
customerArrival :: Double -- ^ t
|
||||
-> Maybe Double -- ^ 𝛼 (default: 200)
|
||||
-> Double -- ^ F(t) = 1 - e^ -(t / 𝛼)
|
||||
customerArrival t 𝛼 = 1.0 - (e ** (negate (t / (fromMaybe defAlpha 𝛼))))
|
||||
|
||||
|
||||
defP :: Double
|
||||
defP = 200
|
||||
|
||||
-- | Models the time for a customer to be processed by the teller.
|
||||
customerProcTime :: Double -- ^ x
|
||||
-> Maybe Double -- ^ p (default: 200)
|
||||
-> Double -- ^ 𝛼
|
||||
-> Double -- ^ β
|
||||
-> Double -- ^ F(x) = p * x^(𝛼 - 1) * (1 - x)^(β - 1)
|
||||
customerProcTime x p 𝛼 β =
|
||||
(fromMaybe defP p) * (x ** (𝛼 - 1)) * ((1 - x) ** (β - 1))
|
||||
|
||||
|
||||
|
||||
|
||||
--------------------------------------
|
||||
--[ Average/max customer proc time ]--
|
||||
--------------------------------------
|
||||
|
||||
|
||||
-- | Get the distribution of customer processing time for x in 0.0001 to 1.0000.
|
||||
customerProcTimeDist :: Customer -> [Double]
|
||||
customerProcTimeDist = \case
|
||||
Yellow -> fmap yellowCustomerProcTime xDist
|
||||
Red -> fmap redCustomerProcTime xDist
|
||||
Blue -> fmap blueCustomerProcTime xDist
|
||||
where
|
||||
yellowCustomerProcTime :: Double -> Double
|
||||
yellowCustomerProcTime x = customerProcTime x Nothing 2.0 5
|
||||
|
||||
redCustomerProcTime :: Double -> Double
|
||||
redCustomerProcTime x = customerProcTime x Nothing 2.0 2.0
|
||||
|
||||
blueCustomerProcTime :: Double -> Double
|
||||
blueCustomerProcTime x = customerProcTime x Nothing 5.0 1.0
|
||||
|
||||
xDist :: [Double]
|
||||
xDist = takeWhile (\x -> x <= 1.0) . iterate (\x -> (x + precision)) $ 0
|
||||
where precision = 0.0001
|
||||
|
||||
|
||||
-- | Average customer processing time.
|
||||
avgCustomerProcTime :: Customer -> Double
|
||||
avgCustomerProcTime customer =
|
||||
let f = customerProcTimeDist customer
|
||||
in if | length f == 0 -> 0
|
||||
| otherwise -> sum f / (fromIntegral $ length f)
|
||||
|
||||
|
||||
-- | Maximum customer processing time.
|
||||
maxCustomerProcTime :: Customer -> Double
|
||||
maxCustomerProcTime customer =
|
||||
let f = customerProcTimeDist customer in maximum f
|
||||
|
||||
|
||||
|
||||
--------------------
|
||||
--[ Queue length ]--
|
||||
--------------------
|
||||
|
||||
|
||||
-- | This correlates to `customerArrival`. Given a minimum probability x,
|
||||
-- returns the time when the next customer "appears".
|
||||
timeToNextCustomer :: Double -> Maybe Double -> Double
|
||||
timeToNextCustomer prob 𝛼 = negate (log (1 - prob) * fromMaybe defAlpha 𝛼)
|
||||
|
||||
|
||||
-- | The first model of a queue length. The queue length is the number
|
||||
-- of people who enter the bank while the current customer is being served.
|
||||
--
|
||||
-- The key is the second argument `prob`. It describes the probability
|
||||
-- a person appears at the bank.
|
||||
queueLength :: Double -- ^ processing time of the current customer
|
||||
-> Double -- ^ probability threshold when a new customer "appears"
|
||||
-> Int
|
||||
queueLength t' prob = go t' 0
|
||||
where
|
||||
go t c | t >= 0 = go (t - timeToNextCustomer prob Nothing) (c + 1)
|
||||
| otherwise = c
|
||||
|
||||
|
||||
-- | Model based on random numbers every x seconds to determine
|
||||
-- whether a person appeared.
|
||||
queueLengthR :: RandomGen g
|
||||
=> Double -- ^ processing time of the current customer
|
||||
-> Double -- ^ Interval
|
||||
-> g
|
||||
-> Int
|
||||
queueLengthR t' int genS = go t' 0 0 (customerArrival 0 Nothing) genS
|
||||
where
|
||||
go :: RandomGen g
|
||||
=> Double -- ^ time left til processing done
|
||||
-> Double -- ^ time since last customer
|
||||
-> Int -- ^ number of customers
|
||||
-> Double -- ^ current probability of a customer appearing
|
||||
-> g
|
||||
-> Int
|
||||
go tP tC c prob gen =
|
||||
let (r, gen') = randomR (0.0, 1.0) gen
|
||||
spawnCustomer = r < prob
|
||||
in if
|
||||
| tP >= 0 && spawnCustomer -> go (tP - int)
|
||||
0.0
|
||||
(c + 1)
|
||||
(customerArrival 0.0 Nothing)
|
||||
gen'
|
||||
| tP >= 0 -> go (tP - int)
|
||||
(tC + int)
|
||||
c
|
||||
(customerArrival tC Nothing)
|
||||
gen'
|
||||
| otherwise -> c
|
||||
|
||||
|
||||
|
||||
|
||||
---------------------
|
||||
--[ Waiting times ]--
|
||||
---------------------
|
||||
|
||||
|
||||
-- | The waiting times for all customers in the queue.
|
||||
--
|
||||
-- Whether queue length or processing time is based on the average or
|
||||
-- maximum processing time is up to the caller. These could be considered
|
||||
-- distinct models.
|
||||
waitingTimes :: Int -- ^ queue length
|
||||
-> Double -- ^ processing time
|
||||
-> [Double]
|
||||
waitingTimes l t =
|
||||
fmap (\x -> sum (fmap (\y -> fromIntegral y * t) [x .. l])) [1 .. l]
|
||||
|
||||
|
||||
maxWaitingTime :: Int -- ^ queue length
|
||||
-> Double -- ^ processing time
|
||||
-> Double
|
||||
maxWaitingTime l t = maximum $ waitingTimes l t
|
||||
|
||||
|
||||
avgWaitingTime :: Int -- ^ queue length
|
||||
-> Double -- ^ processing time
|
||||
-> Double
|
||||
avgWaitingTime 0 t = 0
|
||||
avgWaitingTime l t = (sum $ waitingTimes l t) / (fromIntegral l)
|
||||
|
4
test/MyLibTest.hs
Normal file
4
test/MyLibTest.hs
Normal file
@ -0,0 +1,4 @@
|
||||
module Main (main) where
|
||||
|
||||
main :: IO ()
|
||||
main = putStrLn "Test suite not yet implemented."
|
Loading…
Reference in New Issue
Block a user