half-edge/src/half_edge.c

651 lines
15 KiB
C

/*
* Copyright 2011-2014 hasufell
*
* This file is part of a hasufell project.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation version 2 of the License only.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file half_edge.c
* This file provides operations on half-edge data structures
* which are defined in half_edge.h, as well as assembling
* such a struct.
* @brief operations on half-edge data structs
*/
#include "common.h"
#include "err.h"
#include "filereader.h"
#include "half_edge.h"
#include "print.c"
#include "vector.h"
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/**
* Fault intolerant macro. Will abort the program if the called
* function failed.
*/
#define GET_ALL_EMANATING_EDGES(...) \
{ \
if (!get_all_emanating_edges(__VA_ARGS__)) { \
fprintf(stderr, "Failure in get_all_emanating_edges()!\n"); \
abort(); \
} \
}
/*
* static declarations
*/
static bool get_all_emanating_edges(HE_vert const * const vert,
HE_edge ***edge_array_out,
uint32_t *ec_out);
static int32_t get_row_count(int32_t const **array);
static int32_t get_face_count(FACES const faces);
static int32_t get_edge_count(FACES const faces);
static double **parse_2d_array(char const * const obj_string,
char *item);
static FACES parse_face_array(char const * const obj_string);
/**
* Get all edges that emanate from vertice and return a pointer
* to that array with the size of ec_out.
*
* @param vert the vertice to get the emanating edges of
* @param edge_array_out address of the 2d edge array to save
* the result in [out]
* @param ec_out the edge counter is saved here [out]
* @return true/false for success/failure
*/
static bool get_all_emanating_edges(HE_vert const * const vert,
HE_edge ***edge_array_out,
uint32_t *ec_out)
{
uint32_t ec = 0; /* edge count */
HE_edge **edge_array = NULL;
if (!edge_array_out || !vert || !ec_out)
return false;
HE_edge *edge = vert->edge;
/* build an array of emanating edges */
do {
REALLOC(edge_array,
sizeof(HE_edge*) * (ec + 1));
edge_array[ec] = edge;
edge = edge->pair->next;
ec++;
} while (edge && edge != vert->edge);
/* set out-pointers */
*edge_array_out = edge_array;
*ec_out = ec; /* this is the real size, not the x[ec] value */
return true;
}
/**
* Get the row count of the 2d array.
*
* @param array the 2 dimensional array
* @return the row count
*/
static int32_t get_row_count(int32_t const **array)
{
uint32_t rc = 0;
if (!array)
return -1;
while (array[rc])
rc++;
return rc;
}
/**
* Get the amount of faces as they are in the
* .obj file.
*
* @param faces the faces array
* @return the count of faces, -1 on failure
*/
static int32_t get_face_count(FACES const faces)
{
if (!faces)
return 0;
return get_row_count((int32_t const**)faces);
}
/**
* Get the amount of edges.
*
* @param faces the faces array which will be used
* to calculate the amount of edges
* @return the count of edges, -1 on failure
*/
static int32_t get_edge_count(FACES const faces)
{
uint32_t ec = 0;
uint32_t fc;
if (!faces)
return -1;
fc = get_face_count(faces);
for (uint32_t i = 0; i < fc; i++)
ec += faces[i][0];
return ec;
}
/**
* Parse a string which supposedly is a 2-dimensional
* array in the .obj file, describing all faces, all vertices
* and such. The parsing depends on the item string, such as "f"
* or "v".
*
* @param obj_string the string that is in obj format
* @param item the item to look for, such as "f" or "v"
* @return a newly allocated 2-dimensional array, NULL on failure
*/
static double **parse_2d_array(char const * const obj_string,
char *item)
{
uint32_t lc = 0;
char *string,
*str_ptr_space = NULL, /* for strtok */
*str_ptr_newline = NULL, /* for strtok */
*str_tmp_ptr = NULL; /* for strtok */
double **arr = NULL;
if (!obj_string || !item)
return NULL;
string = malloc(sizeof(char) * strlen(obj_string) + 1);
strcpy(string, obj_string);
str_tmp_ptr = strtok_r(string, "\n", &str_ptr_newline);
while (str_tmp_ptr && *str_tmp_ptr) {
str_tmp_ptr = strtok_r(str_tmp_ptr, " ", &str_ptr_space);
if (!strcmp(str_tmp_ptr, item)) {
char *myint = NULL;
uint8_t i = 1;
REALLOC(arr, sizeof(double*) * (lc + 2));
arr[lc] = NULL;
while ((myint = strtok_r(NULL, " ", &str_ptr_space))) {
i++;
REALLOC(arr[lc],
sizeof(double**) * (i + 1));
arr[lc][i - 1] = atof(myint);
}
arr[lc][0] = i - 1; /* save length at first position */
lc++;
arr[lc] = NULL; /* trailing NULL pointer */
}
str_tmp_ptr = strtok_r(NULL, "\n", &str_ptr_newline);
}
free(string);
return arr;
}
/**
* Parses the face arrays. Since these contain slashes, such as
* "f 1/4/3 8/4/4 9/8/3" we cannot use parse_2d_array() since
* we need extra logic.
*
* @param obj_string the string that is in obj format
* @return a newly allocated FACES array, NULL on failure
*/
static FACES parse_face_array(char const * const obj_string)
{
uint32_t lc = 0;
char *string,
*str_ptr_space = NULL, /* for strtok */
*str_ptr_newline = NULL, /* for strtok */
*str_tmp_ptr = NULL; /* for strtok */
FACES arr = NULL;
if (!obj_string)
return NULL;
string = malloc(sizeof(char) * strlen(obj_string) + 1);
strcpy(string, obj_string);
str_tmp_ptr = strtok_r(string, "\n", &str_ptr_newline);
while (str_tmp_ptr && *str_tmp_ptr) {
str_tmp_ptr = strtok_r(str_tmp_ptr, " ", &str_ptr_space);
if (!strcmp(str_tmp_ptr, "f")) {
char *myint = NULL;
uint8_t i = 1;
REALLOC(arr, sizeof(double*) * (lc + 2));
arr[lc] = NULL;
while ((myint = strtok_r(NULL, " ", &str_ptr_space))) {
i++;
REALLOC(arr[lc],
sizeof(double**) * (i + 1));
arr[lc][i - 1] = atof(myint);
}
arr[lc][0] = i - 1; /* save length at first position */
lc++;
arr[lc] = NULL; /* trailing NULL pointer */
}
str_tmp_ptr = strtok_r(NULL, "\n", &str_ptr_newline);
}
free(string);
return arr;
}
/**
* Calculate the normal of a face that corresponds
* to edge.
*
* @param edge to align the normalization
* @param vec the vector to store the result in [out]
* @return true/false for success/failure
*/
bool face_normal(HE_edge const * const edge,
vector *vec)
{
vector he_vec1,
he_vec2,
he_base;
if (!edge || !vec)
return false;
COPY_VECTOR(edge->next->vert->vec, &he_base);
/* calculate vectors between the vertices */
SUB_VECTORS(edge->next->next->vert->vec, &he_base, &he_vec1);
SUB_VECTORS(edge->vert->vec, &he_base, &he_vec2);
VECTOR_PRODUCT(&he_vec1, &he_vec2, vec);
NORMALIZE_VECTOR(vec, vec);
return true;
}
/**
* Calculate the approximated normal of a vertex.
*
* @param vert the vertex
* @param vec the vector to store the result in [out]
* @return true/false for success/failure
*/
bool vec_normal(HE_vert const * const vert, vector *vec)
{
HE_edge **edge_array = NULL;
uint32_t ec;
vector he_base;
if (!vert || !vec)
return false;
GET_ALL_EMANATING_EDGES(vert, &edge_array, &ec);
COPY_VECTOR(edge_array[0]->vert->vec, &he_base);
SET_NULL_VECTOR(vec); /* set to null for later summation */
/* iterate over all edges, get the normalized
* face vector and add those up */
for (uint32_t i = 0; i < ec; i++) {
vector new_vec;
FACE_NORMAL(edge_array[i], &new_vec);
ADD_VECTORS(vec, &new_vec, vec);
}
/* normalize the result */
NORMALIZE_VECTOR(vec, vec);
free(edge_array);
return true;
}
/**
* Find the center of an object and store the coordinates
* in a HE_vert struct.
*
* @param obj the object we want to find the center of
* @param vec the vector to store the result in [out]
* @return true/false for success/failure
*/
bool find_center(HE_obj const * const obj, vector *vec)
{
float x = 0,
y = 0,
z = 0;
uint32_t i;
if (!obj || !vec)
return false;
for (i = 0; i < obj->vc; i++) {
x += obj->vertices[i].vec->x;
y += obj->vertices[i].vec->y;
z += obj->vertices[i].vec->z;
}
vec->x = x / i;
vec->y = y / i;
vec->z = z / i;
return true;
}
/**
* Calculates the factor that can be used to scale down the object
* to the size of 1.
*
* @param obj the object we want to scale
* @return the corresponding scale factor, -1 on error
*/
float get_normalized_scale_factor(HE_obj const * const obj)
{
float max;
float min;
uint32_t i;
if (!obj)
return -1;
max = obj->vertices[0].vec->x +
obj->vertices[0].vec->y + obj->vertices[0].vec->z;
min = obj->vertices[0].vec->x +
obj->vertices[0].vec->y + obj->vertices[0].vec->z;
for (i = 0; i < obj->vc; i++) {
if ((obj->vertices[i].vec->x +
obj->vertices[i].vec->y +
obj->vertices[i].vec->z) > max)
max = obj->vertices[i].vec->x +
obj->vertices[i].vec->y +
obj->vertices[i].vec->z;
else if ((obj->vertices[i].vec->x +
obj->vertices[i].vec->y +
obj->vertices[i].vec->z) < min)
min = obj->vertices[i].vec->x +
obj->vertices[i].vec->y +
obj->vertices[i].vec->z;
}
return 1 / (max - min);
}
/**
* Scales down the object to the size of 1. The parameter
* is modified!
*
* @param obj the object we want to scale [mod]
*/
bool normalize_object(HE_obj *obj)
{
float scale_factor;
if (!obj)
return false;
scale_factor = get_normalized_scale_factor(obj);
for (uint32_t i = 0; i < obj->vc; i++) {
obj->vertices[i].vec->x = obj->vertices[i].vec->x * scale_factor;
obj->vertices[i].vec->y = obj->vertices[i].vec->y * scale_factor;
obj->vertices[i].vec->z = obj->vertices[i].vec->z * scale_factor;
}
return true;
}
/**
* Parse an .obj string and return a HE_obj
* that represents the whole object.
*
* @param obj_string the whole string from the .obj file
* @return the HE_face array that represents the object
*/
HE_obj *parse_obj(char const * const obj_string)
{
int32_t vc = 0, /* vertices count */
fc = 0, /* face count */
ec = 0; /* edge count */
char *string = NULL;
HE_vert *vertices = NULL;
HE_edge *edges = NULL;
HE_face *faces = NULL;
HE_obj *obj = NULL;
FACES obj_f = NULL;
/* V_TEXTURES obj_vt = NULL; */
VERTICES obj_v = NULL;
if (!obj_string || !*obj_string)
return NULL;
string = malloc(sizeof(char) * strlen(obj_string) + 1);
strcpy(string, obj_string);
obj_v = parse_2d_array(string, "v");
/* obj_vt = parse_2d_array(obj_string, "vt"); */
obj_f = parse_face_array(string);
vc = 0;
vertices = malloc(sizeof(HE_vert) *
(get_row_count((int32_t const**)obj_v) + 1));
/* fill the vertices */
while (obj_v[vc]) {
vector *tmp_vec;
if (obj_v[vc][0] > 3)
ABORT("Failure in parse_obj(),\n"
"malformed vertice, exceeds 3 dimensions!\n");
tmp_vec = malloc(sizeof(vector));
CHECK_PTR_VAL(tmp_vec);
tmp_vec->x = obj_v[vc][1];
tmp_vec->y = obj_v[vc][2];
tmp_vec->z = obj_v[vc][3];
vertices[vc].vec = tmp_vec;
/* set unused/unknown values to NULL */
vertices[vc].edge = NULL;
vertices[vc].edge_array = NULL;
vertices[vc].eac = 0;
/* allocate color struct and set preliminary colors */
vertices[vc].col = malloc(sizeof(color));
vertices[vc].col->red = -1;
vertices[vc].col->green = -1;
vertices[vc].col->blue = -1;
vc++;
}
if ((ec = get_edge_count(obj_f)) == -1)
ABORT("Invalid edge count!\n");
if ((fc = get_face_count(obj_f)) == -1)
ABORT("Invalid face count!\n");
/* print_plain_faces(obj_v, vc + 1); */
faces = (HE_face*) malloc(sizeof(HE_face) * fc);
CHECK_PTR_VAL(faces);
/* hold enough space for possible dummy edges */
edges = (HE_edge*) malloc(sizeof(HE_edge) * ec * 2);
CHECK_PTR_VAL(edges);
ec = 0;
/* create HE_edges and real HE_faces */
for (uint32_t i = 0; i < (uint32_t)fc; i++) { /* for all faces */
/* for all vertices of the face */
for (uint32_t j = 0; j < (uint32_t)obj_f[i][0]; j++) {
uint32_t obj_f_pos = j + 1; /* first pos is reserved for length */
uint32_t fv_arr_id =
obj_f[i][obj_f_pos] - 1; /* fv_id starts at 1 */
edges[ec].vert = &(vertices[fv_arr_id]);
edges[ec].face = &(faces[i]);
edges[ec].pair = NULL; /* preliminary */
vertices[fv_arr_id].edge = &(edges[ec]); /* last one wins */
/* Skip j == 0 here, so we don't underrun the arrays,
* since we always look one edge back. The first edge
* element is taken care of below as well. */
if (j > 0) {
uint32_t *eac = &(edges[ec].vert->eac);
/* connect previous edge to current edge */
edges[ec - 1].next = &(edges[ec]);
/* Acceleration struct:
* add previous edge to edge_array of current vertice */
REALLOC(edges[ec].vert->edge_array,
sizeof(HE_edge*) * (*eac + 1));
edges[ec].vert->edge_array[*eac] = &(edges[ec - 1]);
(*eac)++;
if (obj_f_pos == (uint32_t)obj_f[i][0]) { /* no vertice left */
uint32_t *eac;
/* connect last edge to first edge */
edges[ec].next = &(edges[ec - j]);
eac = &(edges[ec].next->vert->eac);
/* Acceleration struct:
* add last edge to edge_array element of first vertice */
REALLOC(edges[ec].next->vert->edge_array,
sizeof(HE_edge*) * (*eac + 1));
edges[ec].next->vert->edge_array[*eac] = &(edges[ec]);
(*eac)++;
}
}
ec++;
}
faces[i].edge = &(edges[ec - 1]); /* "last" edge */
}
/* find pairs */
for (uint32_t i = 0; i < (uint32_t)ec; i++) { /* for all edges */
uint32_t eac = edges[i].vert->eac;
bool pair_found = false;
for (uint32_t j = 0; j < eac; j++) { /* for all potential pairs */
if (edges[i].vert->edge_array[j] &&
(edges[i].next->vert ==
edges[i].vert->edge_array[j]->vert)) {
edges[i].pair = edges[i].vert->edge_array[j];
edges[i].vert->edge_array[j] = NULL;
/* this is a trick to make sure the
* edge member of HE_vert is never
* a border-edge (unless there are only
* border edges), otherwise
* get_all_emanating_edges() would break
* for vertices that are at the edge
* of an open object */
edges[i].vert->edge = &(edges[i]);
pair_found = true;
break;
}
}
if (!pair_found) { /* we have a border edge */
/* add dummy edge, so get_all_emanating_edges()
* does not break */
edges[ec + i].face = NULL;
edges[ec + i].next = NULL;
edges[ec + i].pair = &(edges[i]);
edges[ec + i].vert = edges[i].next->vert;
edges[i].pair = &(edges[ec + i]);
}
}
/* don't need the edge array anymore */
for (uint32_t i = 0; i < (uint32_t)vc; i++)
free(vertices[i].edge_array);
obj = (HE_obj*) malloc(sizeof(HE_obj));
CHECK_PTR_VAL(obj);
obj->edges = edges;
obj->vertices = vertices;
obj->faces = faces;
obj->ec = ec;
obj->vc = vc;
obj->fc = fc;
for (uint32_t i = 0; i < (uint32_t)fc; i++)
free(obj_f[i]);
free(obj_f);
for (uint32_t i = 0; i < (uint32_t)vc; i++)
free(obj_v[i]);
free(obj_v);
free(string);
return obj;
}
/**
* Free the inner structures of an object.
*
* @param obj the object to free
*/
void delete_object(HE_obj *obj)
{
if (!obj)
return;
for (uint32_t i = 0; i < obj->vc; i++) {
free(obj->vertices[i].vec);
free(obj->vertices[i].col);
}
free(obj->edges);
free(obj->vertices);
free(obj->faces);
}