/* * Copyright 2011-2014 hasufell * * This file is part of a hasufell project. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation version 2 of the License only. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** * @file half_edge.c * This file provides operations on half-edge data structures * which are defined in half_edge.h, as well as assembling * such a struct. * @brief operations on half-edge data structs */ #include "err.h" #include "filereader.h" #include "half_edge.h" #include "vector.h" #include #include #include #include #include /** * Get all edges that emanate from vertice. * * @param vertice the vertice to get the emanating edges of * @return pointer to a NULL-terminated array of half-edges */ HE_edge **get_all_emanating_edges(HE_vert *vertice) { return NULL; } /** * Find the center of an object and store the coordinates * in a HE_vert struct. * * @param obj the object we want to find the center of * @param vec the vector to store the result in [out] * @return true/false for success/failure */ bool find_center(HE_obj const * const obj, vector *vec) { float x = 0, y = 0, z = 0; uint32_t i; if (!obj || !vec) return false; for (i = 0; i < obj->vc; i++) { x += obj->vertices[i].x; y += obj->vertices[i].y; z += obj->vertices[i].z; } vec->x = x / i; vec->y = y / i; vec->z = z / i; return true; } /** * Calculates the factor that can be used to scale down the object * to the size of 1. * * @param obj the object we want to scale * @return the corresponding scale factor, -1 on error */ float get_normalized_scale_factor(HE_obj const * const obj) { float max; float min; uint32_t i; if (!obj) return -1; max = obj->vertices[0].x + obj->vertices[0].y + obj->vertices[0].z; min = obj->vertices[0].x + obj->vertices[0].y + obj->vertices[0].z; for (i = 0; i < obj->vc; i++) { if ((obj->vertices[i].x + obj->vertices[i].y + obj->vertices[i].z) > max) max = obj->vertices[i].x + obj->vertices[i].y + obj->vertices[i].z; else if ((obj->vertices[i].x + obj->vertices[i].y + obj->vertices[i].z) < min) min = obj->vertices[i].x + obj->vertices[i].y + obj->vertices[i].z; } return 1 / (max - min); } /** * Parse an .obj string and return a HE_obj * that represents the whole object. * * @param obj_string the whole string from the .obj file * @return the HE_face array that represents the object */ HE_obj *parse_obj(char const * const obj_string) { uint32_t vc = 0, /* vertices count */ fc = 0, /* face count */ ec = 0; /* edge count */ char *string, *str_ptr_space = NULL, /* for strtok */ *str_ptr_newline = NULL, /* for strtok */ *str_tmp_ptr = NULL; /* for strtok */ HE_vert *vertices = NULL; HE_edge *edges = NULL; HE_face *faces = NULL; HE_obj *obj = NULL; FACE face_v = NULL; if (!obj_string || !*obj_string) return NULL; string = malloc(sizeof(char) * strlen(obj_string) + 1); strcpy(string, obj_string); str_tmp_ptr = strtok_r(string, "\n", &str_ptr_newline); while (str_tmp_ptr && *str_tmp_ptr) { str_tmp_ptr = strtok_r(str_tmp_ptr, " ", &str_ptr_space); /* parse vertices */ if (!strcmp(str_tmp_ptr, "v")) { char *myfloat = NULL; HE_vert *tmp_ptr; tmp_ptr = (HE_vert*) realloc(vertices, sizeof(HE_vert) * (vc + 1)); CHECK_PTR_VAL(tmp_ptr); vertices = tmp_ptr; /* fill x */ myfloat = strtok_r(NULL, " ", &str_ptr_space); CHECK_PTR_VAL(myfloat); vertices[vc].x = atof(myfloat); /* fill y */ myfloat = strtok_r(NULL, " ", &str_ptr_space); CHECK_PTR_VAL(myfloat); vertices[vc].y = atof(myfloat); /* fill z */ myfloat = strtok_r(NULL, " ", &str_ptr_space); CHECK_PTR_VAL(myfloat); vertices[vc].z = atof(myfloat); /* set edge NULL */ vertices[vc].edge = NULL; vc++; /* exceeds 3 dimensions, malformed vertice */ if (strtok_r(NULL, " ", &str_ptr_space)) return NULL; /* parse faces */ } else if (!strcmp(str_tmp_ptr, "f")) { char *myint = NULL; uint8_t i = 0; FACE tmp_ptr = NULL; /* fill FACE */ tmp_ptr = (FACE) realloc(face_v, sizeof(FACE*) * (fc + 1)); CHECK_PTR_VAL(tmp_ptr); face_v = tmp_ptr; face_v[fc] = NULL; while ((myint = strtok_r(NULL, " ", &str_ptr_space))) { uint32_t *tmp_ptr = NULL; i++; ec++; tmp_ptr = (uint32_t*) realloc(face_v[fc], sizeof(FACE**) * (i + 1)); CHECK_PTR_VAL(tmp_ptr); tmp_ptr[i - 1] = (uint32_t) atoi(myint); tmp_ptr[i] = 0; /* so we can iterate over it */ face_v[fc] = tmp_ptr; } fc++; } str_tmp_ptr = strtok_r(NULL, "\n", &str_ptr_newline); } faces = (HE_face*) malloc(sizeof(HE_face) * fc); CHECK_PTR_VAL(faces); edges = (HE_edge*) malloc(sizeof(HE_edge) * ec); CHECK_PTR_VAL(edges); ec = 0; /* create HE_edges and real HE_faces */ for (uint32_t i = 0; i < fc; i++) { uint32_t j = 0; /* for all vertices of the face */ while (face_v[i][j]) { edges[ec].vert = &(vertices[face_v[i][j] - 1]); edges[ec].face = &(faces[j]); edges[ec].pair = NULL; /* preliminary */ vertices[face_v[i][j] - 1].edge = &(edges[ec]); /* last one wins */ if (face_v[i][j + 1]) /* connect to next vertice */ edges[ec].next = &(edges[ec + 1]); else /* no vertices left, connect to first vertice */ edges[ec].next = &(edges[ec - j]); ec++; j++; } faces[i].edge = &(edges[ec - 1]); /* "last" edge */ } /* find pairs */ /* TODO: acceleration */ for (uint32_t i = 0; i < ec; i++) { HE_vert *next_vert = edges[i].next->vert; for (uint32_t j = 0; j < ec; j++) if (next_vert == edges[j].vert && edges[j].next->vert == edges[i].vert) edges[i].pair = &(edges[j]); } obj = (HE_obj*) malloc(sizeof(HE_obj)); CHECK_PTR_VAL(obj); obj->vertices = vertices; obj->vc = vc; obj->edges = edges; obj->ec = ec; obj->faces = faces; obj->fc = fc; free(string); for (uint32_t i = 0; i < fc; i++) free(face_v[i]); free(face_v); return obj; }