/* * Copyright 2011-2014 hasufell * * This file is part of a hasufell project. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation version 2 of the License only. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** * @file half_edge.c * This file provides operations on half-edge data structures * which are defined in half_edge.h, as well as assembling * such a struct. * @brief operations on half-edge data structs */ #include "err.h" #include "filereader.h" #include "half_edge.h" #include "vector.h" #include #include #include #include #include /** * Fault intolerant macro. Will abort the program if the called * function failed. */ #define GET_ALL_EMANATING_EDGES(...) \ { \ if (!get_all_emanating_edges(__VA_ARGS__)) { \ fprintf(stderr, "Failure in get_all_emanating_edges()!\n"); \ abort(); \ } \ } /* * static declarations */ static bool get_all_emanating_edges(HE_vert const * const vert, HE_edge ***edge_array_out, uint32_t *ec_out); /** * Get all edges that emanate from vertice and return a pointer * to that array with the size of ec_out. * * @param vert the vertice to get the emanating edges of * @param edge_array_out address of the 2d edge array to save * the result in [out] * @param ec_out the edge counter is saved here [out] * @return pointer to an array of half-edges, size ec_out */ static bool get_all_emanating_edges(HE_vert const * const vert, HE_edge ***edge_array_out, uint32_t *ec_out) { uint32_t ec = 0, /* edge count */ rc = 0; /* realloc count */ uint32_t const approx_ec = 20; /* allocation chunk */ HE_edge **edge_array; HE_edge **tmp_ptr; if (!vert) return false; edge_array = malloc(sizeof(HE_edge*) * approx_ec); CHECK_PTR_VAL(edge_array); HE_edge *edge = vert->edge; /* build an array of emanating edges */ do { edge_array[ec] = edge; edge = edge->pair->next; ec++; /* allocate more chunks */ if (ec >= approx_ec) { tmp_ptr = realloc(edge_array, sizeof(HE_edge*) * approx_ec * (rc + 2)); CHECK_PTR_VAL(tmp_ptr); edge_array = tmp_ptr; rc++; } } while (edge != vert->edge); /* set out-pointers */ *edge_array_out = edge_array; *ec_out = ec; /* this is the real size, not the x[ec] value */ return true; } /** * Calculate the normal of a face that corresponds * to edge. * * @param edge to align the normalization * @param vec the vector to store the result in [out] * @return true/false for success/failure */ bool face_normal(HE_edge const * const edge, vector *vec) { vector he_vec1, he_vec2, he_base; if (!edge || !vec) return false; COPY_VECTOR(edge->next->vert->vec, &he_base); /* calculate vectors between the vertices */ SUB_VECTORS(edge->next->next->vert->vec, &he_base, &he_vec1); SUB_VECTORS(edge->vert->vec, &he_base, &he_vec2); VECTOR_PRODUCT(&he_vec1, &he_vec2, vec); NORMALIZE_VECTOR(vec, vec); return true; } /** * Calculate the approximated normal of a vertex. * * @param vert the vertex * @param vec the vector to store the result in [out] * @return true/false for success/failure */ bool vec_normal(HE_vert const * const vert, vector *vec) { HE_edge **edge_array = NULL; uint32_t ec; vector he_base; if (!vert || !vec) return false; GET_ALL_EMANATING_EDGES(vert, &edge_array, &ec); COPY_VECTOR(edge_array[0]->vert->vec, &he_base); SET_NULL_VECTOR(vec); /* set to null for later summation */ /* iterate over all edges, get the normalized * face vector and add those up */ for (uint32_t i = 0; i < ec; i++) { vector new_vec; FACE_NORMAL(edge_array[i], &new_vec); ADD_VECTORS(vec, &new_vec, vec); } /* normalize the result */ NORMALIZE_VECTOR(vec, vec); free(edge_array); return true; } /** * Find the center of an object and store the coordinates * in a HE_vert struct. * * @param obj the object we want to find the center of * @param vec the vector to store the result in [out] * @return true/false for success/failure */ bool find_center(HE_obj const * const obj, vector *vec) { float x = 0, y = 0, z = 0; uint32_t i; if (!obj || !vec) return false; for (i = 0; i < obj->vc; i++) { x += obj->vertices[i].vec->x; y += obj->vertices[i].vec->y; z += obj->vertices[i].vec->z; } vec->x = x / i; vec->y = y / i; vec->z = z / i; return true; } /** * Calculates the factor that can be used to scale down the object * to the size of 1. * * @param obj the object we want to scale * @return the corresponding scale factor, -1 on error */ float get_normalized_scale_factor(HE_obj const * const obj) { float max; float min; uint32_t i; if (!obj) return -1; max = obj->vertices[0].vec->x + obj->vertices[0].vec->y + obj->vertices[0].vec->z; min = obj->vertices[0].vec->x + obj->vertices[0].vec->y + obj->vertices[0].vec->z; for (i = 0; i < obj->vc; i++) { if ((obj->vertices[i].vec->x + obj->vertices[i].vec->y + obj->vertices[i].vec->z) > max) max = obj->vertices[i].vec->x + obj->vertices[i].vec->y + obj->vertices[i].vec->z; else if ((obj->vertices[i].vec->x + obj->vertices[i].vec->y + obj->vertices[i].vec->z) < min) min = obj->vertices[i].vec->x + obj->vertices[i].vec->y + obj->vertices[i].vec->z; } return 1 / (max - min); } /** * Scales down the object to the size of 1. The parameter * is modified! * * @param obj the object we want to scale [mod] */ void normalize_object(HE_obj *obj) { float scale_factor; scale_factor = get_normalized_scale_factor(obj); for (uint32_t i = 0; i < obj->vc; i++) { obj->vertices[i].vec->x = obj->vertices[i].vec->x * scale_factor; obj->vertices[i].vec->y = obj->vertices[i].vec->y * scale_factor; obj->vertices[i].vec->z = obj->vertices[i].vec->z * scale_factor; } } /** * Parse an .obj string and return a HE_obj * that represents the whole object. * * @param obj_string the whole string from the .obj file * @return the HE_face array that represents the object */ HE_obj *parse_obj(char const * const obj_string) { uint32_t vc = 0, /* vertices count */ fc = 0, /* face count */ ec = 0; /* edge count */ char *string, *str_ptr_space = NULL, /* for strtok */ *str_ptr_newline = NULL, /* for strtok */ *str_tmp_ptr = NULL; /* for strtok */ HE_vert *vertices = NULL; HE_edge *edges = NULL; HE_face *faces = NULL; HE_obj *obj = NULL; FACE face_v = NULL; if (!obj_string || !*obj_string) return NULL; string = malloc(sizeof(char) * strlen(obj_string) + 1); strcpy(string, obj_string); str_tmp_ptr = strtok_r(string, "\n", &str_ptr_newline); while (str_tmp_ptr && *str_tmp_ptr) { str_tmp_ptr = strtok_r(str_tmp_ptr, " ", &str_ptr_space); /* parse vertices */ if (!strcmp(str_tmp_ptr, "v")) { char *myfloat = NULL; HE_vert *tmp_ptr; vector *tmp_vec = malloc(sizeof(vector)); CHECK_PTR_VAL(tmp_vec); tmp_ptr = (HE_vert*) realloc(vertices, sizeof(HE_vert) * (vc + 1)); CHECK_PTR_VAL(tmp_ptr); vertices = tmp_ptr; /* fill x */ myfloat = strtok_r(NULL, " ", &str_ptr_space); CHECK_PTR_VAL(myfloat); tmp_vec->x = atof(myfloat); /* fill y */ myfloat = strtok_r(NULL, " ", &str_ptr_space); CHECK_PTR_VAL(myfloat); tmp_vec->y = atof(myfloat); /* fill z */ myfloat = strtok_r(NULL, " ", &str_ptr_space); CHECK_PTR_VAL(myfloat); tmp_vec->z = atof(myfloat); vertices[vc].vec = tmp_vec; /* set edge NULL */ vertices[vc].edge = NULL; vc++; /* exceeds 3 dimensions, malformed vertice */ if (strtok_r(NULL, " ", &str_ptr_space)) return NULL; /* parse faces */ } else if (!strcmp(str_tmp_ptr, "f")) { char *myint = NULL; uint8_t i = 0; FACE tmp_ptr = NULL; /* fill FACE */ tmp_ptr = (FACE) realloc(face_v, sizeof(FACE*) * (fc + 1)); CHECK_PTR_VAL(tmp_ptr); face_v = tmp_ptr; face_v[fc] = NULL; while ((myint = strtok_r(NULL, " ", &str_ptr_space))) { uint32_t *tmp_ptr = NULL; i++; ec++; tmp_ptr = (uint32_t*) realloc(face_v[fc], sizeof(FACE**) * (i + 1)); CHECK_PTR_VAL(tmp_ptr); tmp_ptr[i - 1] = (uint32_t) atoi(myint); tmp_ptr[i] = 0; /* so we can iterate over it */ face_v[fc] = tmp_ptr; } fc++; } str_tmp_ptr = strtok_r(NULL, "\n", &str_ptr_newline); } faces = (HE_face*) malloc(sizeof(HE_face) * fc); CHECK_PTR_VAL(faces); edges = (HE_edge*) malloc(sizeof(HE_edge) * ec); CHECK_PTR_VAL(edges); ec = 0; /* create HE_edges and real HE_faces */ for (uint32_t i = 0; i < fc; i++) { uint32_t j = 0; /* for all vertices of the face */ while (face_v[i][j]) { edges[ec].vert = &(vertices[face_v[i][j] - 1]); edges[ec].face = &(faces[j]); edges[ec].pair = NULL; /* preliminary */ vertices[face_v[i][j] - 1].edge = &(edges[ec]); /* last one wins */ if (face_v[i][j + 1]) /* connect to next vertice */ edges[ec].next = &(edges[ec + 1]); else /* no vertices left, connect to first vertice */ edges[ec].next = &(edges[ec - j]); ec++; j++; } faces[i].edge = &(edges[ec - 1]); /* "last" edge */ } /* find pairs */ /* TODO: acceleration */ for (uint32_t i = 0; i < ec; i++) { HE_vert *next_vert = edges[i].next->vert; for (uint32_t j = 0; j < ec; j++) if (next_vert == edges[j].vert && edges[j].next->vert == edges[i].vert) edges[i].pair = &(edges[j]); } obj = (HE_obj*) malloc(sizeof(HE_obj)); CHECK_PTR_VAL(obj); obj->vertices = vertices; obj->vc = vc; obj->edges = edges; obj->ec = ec; obj->faces = faces; obj->fc = fc; free(string); for (uint32_t i = 0; i < fc; i++) free(face_v[i]); free(face_v); return obj; } /** * Free the inner structures of an object. * * @param obj the object to free */ void delete_object(HE_obj *obj) { for (uint32_t i = 0; i < obj->vc; i++) free(obj->vertices[i].vec); free(obj->edges); free(obj->vertices); free(obj->faces); }