/////////////////////////////////////////////////////////////////////////////// // /// \file index_encoder.c /// \brief Encodes the Index field // // Author: Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "index_encoder.h" #include "index.h" #include "check.h" typedef struct { enum { SEQ_INDICATOR, SEQ_COUNT, SEQ_UNPADDED, SEQ_UNCOMPRESSED, SEQ_NEXT, SEQ_PADDING, SEQ_CRC32, } sequence; /// Index being encoded const lzma_index *index; /// Iterator for the Index being encoded lzma_index_iter iter; /// Position in integers size_t pos; /// CRC32 of the List of Records field uint32_t crc32; } lzma_index_coder; static lzma_ret index_encode(void *coder_ptr, const lzma_allocator *allocator lzma_attribute((__unused__)), const uint8_t *restrict in lzma_attribute((__unused__)), size_t *restrict in_pos lzma_attribute((__unused__)), size_t in_size lzma_attribute((__unused__)), uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action lzma_attribute((__unused__))) { lzma_index_coder *coder = coder_ptr; // Position where to start calculating CRC32. The idea is that we // need to call lzma_crc32() only once per call to index_encode(). const size_t out_start = *out_pos; // Return value to use if we return at the end of this function. // We use "goto out" to jump out of the while-switch construct // instead of returning directly, because that way we don't need // to copypaste the lzma_crc32() call to many places. lzma_ret ret = LZMA_OK; while (*out_pos < out_size) switch (coder->sequence) { case SEQ_INDICATOR: out[*out_pos] = 0x00; ++*out_pos; coder->sequence = SEQ_COUNT; break; case SEQ_COUNT: { const lzma_vli count = lzma_index_block_count(coder->index); ret = lzma_vli_encode(count, &coder->pos, out, out_pos, out_size); if (ret != LZMA_STREAM_END) goto out; ret = LZMA_OK; coder->pos = 0; coder->sequence = SEQ_NEXT; break; } case SEQ_NEXT: if (lzma_index_iter_next( &coder->iter, LZMA_INDEX_ITER_BLOCK)) { // Get the size of the Index Padding field. coder->pos = lzma_index_padding_size(coder->index); assert(coder->pos <= 3); coder->sequence = SEQ_PADDING; break; } coder->sequence = SEQ_UNPADDED; // Fall through case SEQ_UNPADDED: case SEQ_UNCOMPRESSED: { const lzma_vli size = coder->sequence == SEQ_UNPADDED ? coder->iter.block.unpadded_size : coder->iter.block.uncompressed_size; ret = lzma_vli_encode(size, &coder->pos, out, out_pos, out_size); if (ret != LZMA_STREAM_END) goto out; ret = LZMA_OK; coder->pos = 0; // Advance to SEQ_UNCOMPRESSED or SEQ_NEXT. ++coder->sequence; break; } case SEQ_PADDING: if (coder->pos > 0) { --coder->pos; out[(*out_pos)++] = 0x00; break; } // Finish the CRC32 calculation. coder->crc32 = lzma_crc32(out + out_start, *out_pos - out_start, coder->crc32); coder->sequence = SEQ_CRC32; // Fall through case SEQ_CRC32: // We don't use the main loop, because we don't want // coder->crc32 to be touched anymore. do { if (*out_pos == out_size) return LZMA_OK; out[*out_pos] = (coder->crc32 >> (coder->pos * 8)) & 0xFF; ++*out_pos; } while (++coder->pos < 4); return LZMA_STREAM_END; default: assert(0); return LZMA_PROG_ERROR; } out: // Update the CRC32. coder->crc32 = lzma_crc32(out + out_start, *out_pos - out_start, coder->crc32); return ret; } static void index_encoder_end(void *coder, const lzma_allocator *allocator) { lzma_free(coder, allocator); return; } static void index_encoder_reset(lzma_index_coder *coder, const lzma_index *i) { lzma_index_iter_init(&coder->iter, i); coder->sequence = SEQ_INDICATOR; coder->index = i; coder->pos = 0; coder->crc32 = 0; return; } extern lzma_ret lzma_index_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator, const lzma_index *i) { lzma_next_coder_init(&lzma_index_encoder_init, next, allocator); if (i == NULL) return LZMA_PROG_ERROR; if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_index_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &index_encode; next->end = &index_encoder_end; } index_encoder_reset(next->coder, i); return LZMA_OK; } extern LZMA_API(lzma_ret) lzma_index_encoder(lzma_stream *strm, const lzma_index *i) { lzma_next_strm_init(lzma_index_encoder_init, strm, i); strm->internal->supported_actions[LZMA_RUN] = true; strm->internal->supported_actions[LZMA_FINISH] = true; return LZMA_OK; } extern LZMA_API(lzma_ret) lzma_index_buffer_encode(const lzma_index *i, uint8_t *out, size_t *out_pos, size_t out_size) { // Validate the arguments. if (i == NULL || out == NULL || out_pos == NULL || *out_pos > out_size) return LZMA_PROG_ERROR; // Don't try to encode if there's not enough output space. if (out_size - *out_pos < lzma_index_size(i)) return LZMA_BUF_ERROR; // The Index encoder needs just one small data structure so we can // allocate it on stack. lzma_index_coder coder; index_encoder_reset(&coder, i); // Do the actual encoding. This should never fail, but store // the original *out_pos just in case. const size_t out_start = *out_pos; lzma_ret ret = index_encode(&coder, NULL, NULL, NULL, 0, out, out_pos, out_size, LZMA_RUN); if (ret == LZMA_STREAM_END) { ret = LZMA_OK; } else { // We should never get here, but just in case, restore the // output position and set the error accordingly if something // goes wrong and debugging isn't enabled. assert(0); *out_pos = out_start; ret = LZMA_PROG_ERROR; } return ret; }