ghcup-hs/3rdparty/libarchive/c/archive_cryptor.c

520 lines
13 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2014 Michihiro NAKAJIMA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "archive_platform.h"
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#include "archive.h"
#include "archive_cryptor_private.h"
/*
* On systems that do not support any recognized crypto libraries,
* this file will normally define no usable symbols.
*
* But some compilers and linkers choke on empty object files, so
* define a public symbol that will always exist. This could
* be removed someday if this file gains another always-present
* symbol definition.
*/
int __libarchive_cryptor_build_hack(void) {
return 0;
}
#ifdef ARCHIVE_CRYPTOR_USE_Apple_CommonCrypto
static int
pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt,
size_t salt_len, unsigned rounds, uint8_t *derived_key,
size_t derived_key_len)
{
CCKeyDerivationPBKDF(kCCPBKDF2, (const char *)pw,
pw_len, salt, salt_len, kCCPRFHmacAlgSHA1, rounds,
derived_key, derived_key_len);
return 0;
}
#elif defined(_WIN32) && !defined(__CYGWIN__) && defined(HAVE_BCRYPT_H)
#ifdef _MSC_VER
#pragma comment(lib, "Bcrypt.lib")
#endif
static int
pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt,
size_t salt_len, unsigned rounds, uint8_t *derived_key,
size_t derived_key_len)
{
NTSTATUS status;
BCRYPT_ALG_HANDLE hAlg;
status = BCryptOpenAlgorithmProvider(&hAlg, BCRYPT_SHA1_ALGORITHM,
MS_PRIMITIVE_PROVIDER, BCRYPT_ALG_HANDLE_HMAC_FLAG);
if (!BCRYPT_SUCCESS(status))
return -1;
status = BCryptDeriveKeyPBKDF2(hAlg,
(PUCHAR)(uintptr_t)pw, (ULONG)pw_len,
(PUCHAR)(uintptr_t)salt, (ULONG)salt_len, rounds,
(PUCHAR)derived_key, (ULONG)derived_key_len, 0);
BCryptCloseAlgorithmProvider(hAlg, 0);
return (BCRYPT_SUCCESS(status)) ? 0: -1;
}
#elif defined(HAVE_LIBMBEDCRYPTO) && defined(HAVE_MBEDTLS_PKCS5_H)
static int
pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt,
size_t salt_len, unsigned rounds, uint8_t *derived_key,
size_t derived_key_len)
{
mbedtls_md_context_t ctx;
const mbedtls_md_info_t *info;
int ret;
mbedtls_md_init(&ctx);
info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1);
if (info == NULL) {
mbedtls_md_free(&ctx);
return (-1);
}
ret = mbedtls_md_setup(&ctx, info, 1);
if (ret != 0) {
mbedtls_md_free(&ctx);
return (-1);
}
ret = mbedtls_pkcs5_pbkdf2_hmac(&ctx, (const unsigned char *)pw,
pw_len, salt, salt_len, rounds, derived_key_len, derived_key);
mbedtls_md_free(&ctx);
return (ret);
}
#elif defined(HAVE_LIBNETTLE) && defined(HAVE_NETTLE_PBKDF2_H)
static int
pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt,
size_t salt_len, unsigned rounds, uint8_t *derived_key,
size_t derived_key_len) {
pbkdf2_hmac_sha1((unsigned)pw_len, (const uint8_t *)pw, rounds,
salt_len, salt, derived_key_len, derived_key);
return 0;
}
#elif defined(HAVE_LIBCRYPTO) && defined(HAVE_PKCS5_PBKDF2_HMAC_SHA1)
static int
pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt,
size_t salt_len, unsigned rounds, uint8_t *derived_key,
size_t derived_key_len) {
PKCS5_PBKDF2_HMAC_SHA1(pw, pw_len, salt, salt_len, rounds,
derived_key_len, derived_key);
return 0;
}
#else
/* Stub */
static int
pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt,
size_t salt_len, unsigned rounds, uint8_t *derived_key,
size_t derived_key_len) {
(void)pw; /* UNUSED */
(void)pw_len; /* UNUSED */
(void)salt; /* UNUSED */
(void)salt_len; /* UNUSED */
(void)rounds; /* UNUSED */
(void)derived_key; /* UNUSED */
(void)derived_key_len; /* UNUSED */
return -1; /* UNSUPPORTED */
}
#endif
#ifdef ARCHIVE_CRYPTOR_USE_Apple_CommonCrypto
# if MAC_OS_X_VERSION_MAX_ALLOWED < 1090
# define kCCAlgorithmAES kCCAlgorithmAES128
# endif
static int
aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len)
{
CCCryptorStatus r;
ctx->key_len = key_len;
memcpy(ctx->key, key, key_len);
memset(ctx->nonce, 0, sizeof(ctx->nonce));
ctx->encr_pos = AES_BLOCK_SIZE;
r = CCCryptorCreateWithMode(kCCEncrypt, kCCModeECB, kCCAlgorithmAES,
ccNoPadding, NULL, key, key_len, NULL, 0, 0, 0, &ctx->ctx);
return (r == kCCSuccess)? 0: -1;
}
static int
aes_ctr_encrypt_counter(archive_crypto_ctx *ctx)
{
CCCryptorRef ref = ctx->ctx;
CCCryptorStatus r;
r = CCCryptorReset(ref, NULL);
if (r != kCCSuccess && r != kCCUnimplemented)
return -1;
r = CCCryptorUpdate(ref, ctx->nonce, AES_BLOCK_SIZE, ctx->encr_buf,
AES_BLOCK_SIZE, NULL);
return (r == kCCSuccess)? 0: -1;
}
static int
aes_ctr_release(archive_crypto_ctx *ctx)
{
memset(ctx->key, 0, ctx->key_len);
memset(ctx->nonce, 0, sizeof(ctx->nonce));
return 0;
}
#elif defined(_WIN32) && !defined(__CYGWIN__) && defined(HAVE_BCRYPT_H)
static int
aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len)
{
BCRYPT_ALG_HANDLE hAlg;
BCRYPT_KEY_HANDLE hKey;
DWORD keyObj_len, aes_key_len;
PBYTE keyObj;
ULONG result;
NTSTATUS status;
BCRYPT_KEY_LENGTHS_STRUCT key_lengths;
ctx->hAlg = NULL;
ctx->hKey = NULL;
ctx->keyObj = NULL;
switch (key_len) {
case 16: aes_key_len = 128; break;
case 24: aes_key_len = 192; break;
case 32: aes_key_len = 256; break;
default: return -1;
}
status = BCryptOpenAlgorithmProvider(&hAlg, BCRYPT_AES_ALGORITHM,
MS_PRIMITIVE_PROVIDER, 0);
if (!BCRYPT_SUCCESS(status))
return -1;
status = BCryptGetProperty(hAlg, BCRYPT_KEY_LENGTHS, (PUCHAR)&key_lengths,
sizeof(key_lengths), &result, 0);
if (!BCRYPT_SUCCESS(status)) {
BCryptCloseAlgorithmProvider(hAlg, 0);
return -1;
}
if (key_lengths.dwMinLength > aes_key_len
|| key_lengths.dwMaxLength < aes_key_len) {
BCryptCloseAlgorithmProvider(hAlg, 0);
return -1;
}
status = BCryptGetProperty(hAlg, BCRYPT_OBJECT_LENGTH, (PUCHAR)&keyObj_len,
sizeof(keyObj_len), &result, 0);
if (!BCRYPT_SUCCESS(status)) {
BCryptCloseAlgorithmProvider(hAlg, 0);
return -1;
}
keyObj = (PBYTE)HeapAlloc(GetProcessHeap(), 0, keyObj_len);
if (keyObj == NULL) {
BCryptCloseAlgorithmProvider(hAlg, 0);
return -1;
}
status = BCryptSetProperty(hAlg, BCRYPT_CHAINING_MODE,
(PUCHAR)BCRYPT_CHAIN_MODE_ECB, sizeof(BCRYPT_CHAIN_MODE_ECB), 0);
if (!BCRYPT_SUCCESS(status)) {
BCryptCloseAlgorithmProvider(hAlg, 0);
HeapFree(GetProcessHeap(), 0, keyObj);
return -1;
}
status = BCryptGenerateSymmetricKey(hAlg, &hKey,
keyObj, keyObj_len,
(PUCHAR)(uintptr_t)key, (ULONG)key_len, 0);
if (!BCRYPT_SUCCESS(status)) {
BCryptCloseAlgorithmProvider(hAlg, 0);
HeapFree(GetProcessHeap(), 0, keyObj);
return -1;
}
ctx->hAlg = hAlg;
ctx->hKey = hKey;
ctx->keyObj = keyObj;
ctx->keyObj_len = keyObj_len;
ctx->encr_pos = AES_BLOCK_SIZE;
return 0;
}
static int
aes_ctr_encrypt_counter(archive_crypto_ctx *ctx)
{
NTSTATUS status;
ULONG result;
status = BCryptEncrypt(ctx->hKey, (PUCHAR)ctx->nonce, AES_BLOCK_SIZE,
NULL, NULL, 0, (PUCHAR)ctx->encr_buf, AES_BLOCK_SIZE,
&result, 0);
return BCRYPT_SUCCESS(status) ? 0 : -1;
}
static int
aes_ctr_release(archive_crypto_ctx *ctx)
{
if (ctx->hAlg != NULL) {
BCryptCloseAlgorithmProvider(ctx->hAlg, 0);
ctx->hAlg = NULL;
BCryptDestroyKey(ctx->hKey);
ctx->hKey = NULL;
HeapFree(GetProcessHeap(), 0, ctx->keyObj);
ctx->keyObj = NULL;
}
memset(ctx, 0, sizeof(*ctx));
return 0;
}
#elif defined(HAVE_LIBMBEDCRYPTO) && defined(HAVE_MBEDTLS_AES_H)
static int
aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len)
{
mbedtls_aes_init(&ctx->ctx);
ctx->key_len = key_len;
memcpy(ctx->key, key, key_len);
memset(ctx->nonce, 0, sizeof(ctx->nonce));
ctx->encr_pos = AES_BLOCK_SIZE;
return 0;
}
static int
aes_ctr_encrypt_counter(archive_crypto_ctx *ctx)
{
if (mbedtls_aes_setkey_enc(&ctx->ctx, ctx->key,
ctx->key_len * 8) != 0)
return (-1);
if (mbedtls_aes_crypt_ecb(&ctx->ctx, MBEDTLS_AES_ENCRYPT, ctx->nonce,
ctx->encr_buf) != 0)
return (-1);
return 0;
}
static int
aes_ctr_release(archive_crypto_ctx *ctx)
{
mbedtls_aes_free(&ctx->ctx);
memset(ctx, 0, sizeof(*ctx));
return 0;
}
#elif defined(HAVE_LIBNETTLE) && defined(HAVE_NETTLE_AES_H)
static int
aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len)
{
ctx->key_len = key_len;
memcpy(ctx->key, key, key_len);
memset(ctx->nonce, 0, sizeof(ctx->nonce));
ctx->encr_pos = AES_BLOCK_SIZE;
memset(&ctx->ctx, 0, sizeof(ctx->ctx));
return 0;
}
static int
aes_ctr_encrypt_counter(archive_crypto_ctx *ctx)
{
aes_set_encrypt_key(&ctx->ctx, ctx->key_len, ctx->key);
aes_encrypt(&ctx->ctx, AES_BLOCK_SIZE, ctx->encr_buf, ctx->nonce);
return 0;
}
static int
aes_ctr_release(archive_crypto_ctx *ctx)
{
memset(ctx, 0, sizeof(*ctx));
return 0;
}
#elif defined(HAVE_LIBCRYPTO)
static int
aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len)
{
if ((ctx->ctx = EVP_CIPHER_CTX_new()) == NULL)
return -1;
switch (key_len) {
case 16: ctx->type = EVP_aes_128_ecb(); break;
case 24: ctx->type = EVP_aes_192_ecb(); break;
case 32: ctx->type = EVP_aes_256_ecb(); break;
default: ctx->type = NULL; return -1;
}
ctx->key_len = key_len;
memcpy(ctx->key, key, key_len);
memset(ctx->nonce, 0, sizeof(ctx->nonce));
ctx->encr_pos = AES_BLOCK_SIZE;
#if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER)
if (!EVP_CIPHER_CTX_reset(ctx->ctx)) {
EVP_CIPHER_CTX_free(ctx->ctx);
ctx->ctx = NULL;
}
#else
EVP_CIPHER_CTX_init(ctx->ctx);
#endif
return 0;
}
static int
aes_ctr_encrypt_counter(archive_crypto_ctx *ctx)
{
int outl = 0;
int r;
r = EVP_EncryptInit_ex(ctx->ctx, ctx->type, NULL, ctx->key, NULL);
if (r == 0)
return -1;
r = EVP_EncryptUpdate(ctx->ctx, ctx->encr_buf, &outl, ctx->nonce,
AES_BLOCK_SIZE);
if (r == 0 || outl != AES_BLOCK_SIZE)
return -1;
return 0;
}
static int
aes_ctr_release(archive_crypto_ctx *ctx)
{
EVP_CIPHER_CTX_free(ctx->ctx);
memset(ctx->key, 0, ctx->key_len);
memset(ctx->nonce, 0, sizeof(ctx->nonce));
return 0;
}
#else
#define ARCHIVE_CRYPTOR_STUB
/* Stub */
static int
aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len)
{
(void)ctx; /* UNUSED */
(void)key; /* UNUSED */
(void)key_len; /* UNUSED */
return -1;
}
static int
aes_ctr_encrypt_counter(archive_crypto_ctx *ctx)
{
(void)ctx; /* UNUSED */
return -1;
}
static int
aes_ctr_release(archive_crypto_ctx *ctx)
{
(void)ctx; /* UNUSED */
return 0;
}
#endif
#ifdef ARCHIVE_CRYPTOR_STUB
static int
aes_ctr_update(archive_crypto_ctx *ctx, const uint8_t * const in,
size_t in_len, uint8_t * const out, size_t *out_len)
{
(void)ctx; /* UNUSED */
(void)in; /* UNUSED */
(void)in_len; /* UNUSED */
(void)out; /* UNUSED */
(void)out_len; /* UNUSED */
aes_ctr_encrypt_counter(ctx); /* UNUSED */ /* Fix unused function warning */
return -1;
}
#else
static void
aes_ctr_increase_counter(archive_crypto_ctx *ctx)
{
uint8_t *const nonce = ctx->nonce;
int j;
for (j = 0; j < 8; j++) {
if (++nonce[j])
break;
}
}
static int
aes_ctr_update(archive_crypto_ctx *ctx, const uint8_t * const in,
size_t in_len, uint8_t * const out, size_t *out_len)
{
uint8_t *const ebuf = ctx->encr_buf;
unsigned pos = ctx->encr_pos;
unsigned max = (unsigned)((in_len < *out_len)? in_len: *out_len);
unsigned i;
for (i = 0; i < max; ) {
if (pos == AES_BLOCK_SIZE) {
aes_ctr_increase_counter(ctx);
if (aes_ctr_encrypt_counter(ctx) != 0)
return -1;
while (max -i >= AES_BLOCK_SIZE) {
for (pos = 0; pos < AES_BLOCK_SIZE; pos++)
out[i+pos] = in[i+pos] ^ ebuf[pos];
i += AES_BLOCK_SIZE;
aes_ctr_increase_counter(ctx);
if (aes_ctr_encrypt_counter(ctx) != 0)
return -1;
}
pos = 0;
if (i >= max)
break;
}
out[i] = in[i] ^ ebuf[pos++];
i++;
}
ctx->encr_pos = pos;
*out_len = i;
return 0;
}
#endif /* ARCHIVE_CRYPTOR_STUB */
const struct archive_cryptor __archive_cryptor =
{
&pbkdf2_sha1,
&aes_ctr_init,
&aes_ctr_update,
&aes_ctr_release,
&aes_ctr_init,
&aes_ctr_update,
&aes_ctr_release,
};