ghcup-hs/3rdparty/zlib/Codec/Compression/Zlib/Internal.hs

954 lines
37 KiB
Haskell
Raw Normal View History

{-# LANGUAGE CPP, RankNTypes, DeriveDataTypeable, BangPatterns #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
-----------------------------------------------------------------------------
-- |
-- Copyright : (c) 2006-2015 Duncan Coutts
-- License : BSD-style
--
-- Maintainer : duncan@community.haskell.org
--
-- Pure and IO stream based interfaces to lower level zlib wrapper
--
-----------------------------------------------------------------------------
module Codec.Compression.Zlib.Internal (
-- * Pure interface
compress,
decompress,
-- * Monadic incremental interface
-- $incremental-compression
-- ** Using incremental compression
-- $using-incremental-compression
CompressStream(..),
compressST,
compressIO,
foldCompressStream,
foldCompressStreamWithInput,
-- ** Using incremental decompression
-- $using-incremental-decompression
DecompressStream(..),
DecompressError(..),
decompressST,
decompressIO,
foldDecompressStream,
foldDecompressStreamWithInput,
-- * The compression parameter types
CompressParams(..),
defaultCompressParams,
DecompressParams(..),
defaultDecompressParams,
Stream.Format(..),
Stream.gzipFormat,
Stream.zlibFormat,
Stream.rawFormat,
Stream.gzipOrZlibFormat,
Stream.CompressionLevel(..),
Stream.defaultCompression,
Stream.noCompression,
Stream.bestSpeed,
Stream.bestCompression,
Stream.compressionLevel,
Stream.Method(..),
Stream.deflateMethod,
Stream.WindowBits(..),
Stream.defaultWindowBits,
Stream.windowBits,
Stream.MemoryLevel(..),
Stream.defaultMemoryLevel,
Stream.minMemoryLevel,
Stream.maxMemoryLevel,
Stream.memoryLevel,
Stream.CompressionStrategy(..),
Stream.defaultStrategy,
Stream.filteredStrategy,
Stream.huffmanOnlyStrategy,
) where
import Prelude hiding (length)
import Control.Monad (when)
import Control.Exception (Exception, throw, assert)
import Control.Monad.ST.Lazy hiding (stToIO)
import Control.Monad.ST.Strict (stToIO)
#if __GLASGOW_HASKELL__ >= 702
import qualified Control.Monad.ST.Unsafe as Unsafe (unsafeIOToST)
#else
import qualified Control.Monad.ST.Strict as Unsafe (unsafeIOToST)
#endif
import Data.Typeable (Typeable)
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Lazy.Internal as L
import qualified Data.ByteString as S
import qualified Data.ByteString.Internal as S
import Data.Word (Word8)
import GHC.IO (noDuplicate)
import qualified Codec.Compression.Zlib.Stream as Stream
import Codec.Compression.Zlib.Stream (Stream)
-- | The full set of parameters for compression. The defaults are
-- 'defaultCompressParams'.
--
-- The 'compressBufferSize' is the size of the first output buffer containing
-- the compressed data. If you know an approximate upper bound on the size of
-- the compressed data then setting this parameter can save memory. The default
-- compression output buffer size is @16k@. If your extimate is wrong it does
-- not matter too much, the default buffer size will be used for the remaining
-- chunks.
--
data CompressParams = CompressParams {
compressLevel :: !Stream.CompressionLevel,
compressMethod :: !Stream.Method,
compressWindowBits :: !Stream.WindowBits,
compressMemoryLevel :: !Stream.MemoryLevel,
compressStrategy :: !Stream.CompressionStrategy,
compressBufferSize :: !Int,
compressDictionary :: Maybe S.ByteString
} deriving Show
-- | The full set of parameters for decompression. The defaults are
-- 'defaultDecompressParams'.
--
-- The 'decompressBufferSize' is the size of the first output buffer,
-- containing the uncompressed data. If you know an exact or approximate upper
-- bound on the size of the decompressed data then setting this parameter can
-- save memory. The default decompression output buffer size is @32k@. If your
-- extimate is wrong it does not matter too much, the default buffer size will
-- be used for the remaining chunks.
--
-- One particular use case for setting the 'decompressBufferSize' is if you
-- know the exact size of the decompressed data and want to produce a strict
-- 'Data.ByteString.ByteString'. The compression and deccompression functions
-- use lazy 'Data.ByteString.Lazy.ByteString's but if you set the
-- 'decompressBufferSize' correctly then you can generate a lazy
-- 'Data.ByteString.Lazy.ByteString' with exactly one chunk, which can be
-- converted to a strict 'Data.ByteString.ByteString' in @O(1)@ time using
-- @'Data.ByteString.concat' . 'Data.ByteString.Lazy.toChunks'@.
--
data DecompressParams = DecompressParams {
decompressWindowBits :: !Stream.WindowBits,
decompressBufferSize :: !Int,
decompressDictionary :: Maybe S.ByteString,
decompressAllMembers :: Bool
} deriving Show
-- | The default set of parameters for compression. This is typically used with
-- the @compressWith@ function with specific parameters overridden.
--
defaultCompressParams :: CompressParams
defaultCompressParams = CompressParams {
compressLevel = Stream.defaultCompression,
compressMethod = Stream.deflateMethod,
compressWindowBits = Stream.defaultWindowBits,
compressMemoryLevel = Stream.defaultMemoryLevel,
compressStrategy = Stream.defaultStrategy,
compressBufferSize = defaultCompressBufferSize,
compressDictionary = Nothing
}
-- | The default set of parameters for decompression. This is typically used with
-- the @compressWith@ function with specific parameters overridden.
--
defaultDecompressParams :: DecompressParams
defaultDecompressParams = DecompressParams {
decompressWindowBits = Stream.defaultWindowBits,
decompressBufferSize = defaultDecompressBufferSize,
decompressDictionary = Nothing,
decompressAllMembers = True
}
-- | The default chunk sizes for the output of compression and decompression
-- are 16k and 32k respectively (less a small accounting overhead).
--
defaultCompressBufferSize, defaultDecompressBufferSize :: Int
defaultCompressBufferSize = 16 * 1024 - L.chunkOverhead
defaultDecompressBufferSize = 32 * 1024 - L.chunkOverhead
-- | The unfolding of the decompression process, where you provide a sequence
-- of compressed data chunks as input and receive a sequence of uncompressed
-- data chunks as output. The process is incremental, in that the demand for
-- input and provision of output are interleaved.
--
-- To indicate the end of the input supply an empty input chunk. Note that
-- for 'gzipFormat' with the default 'decompressAllMembers' @True@ you will
-- have to do this, as the decompressor will look for any following members.
-- With 'decompressAllMembers' @False@ the decompressor knows when the data
-- ends and will produce 'DecompressStreamEnd' without you having to supply an
-- empty chunk to indicate the end of the input.
--
data DecompressStream m =
DecompressInputRequired {
decompressSupplyInput :: S.ByteString -> m (DecompressStream m)
}
| DecompressOutputAvailable {
decompressOutput :: !S.ByteString,
decompressNext :: m (DecompressStream m)
}
-- | Includes any trailing unconsumed /input/ data.
| DecompressStreamEnd {
decompressUnconsumedInput :: S.ByteString
}
-- | An error code
| DecompressStreamError {
decompressStreamError :: DecompressError
}
-- | The possible error cases when decompressing a stream.
--
-- This can be 'show'n to give a human readable error message.
--
data DecompressError =
-- | The compressed data stream ended prematurely. This may happen if the
-- input data stream was truncated.
TruncatedInput
-- | It is possible to do zlib compression with a custom dictionary. This
-- allows slightly higher compression ratios for short files. However such
-- compressed streams require the same dictionary when decompressing. This
-- error is for when we encounter a compressed stream that needs a
-- dictionary, and it's not provided.
| DictionaryRequired
-- | If the stream requires a dictionary and you provide one with the
-- wrong 'DictionaryHash' then you will get this error.
| DictionaryMismatch
-- | If the compressed data stream is corrupted in any way then you will
-- get this error, for example if the input data just isn't a compressed
-- zlib data stream. In particular if the data checksum turns out to be
-- wrong then you will get all the decompressed data but this error at the
-- end, instead of the normal sucessful 'StreamEnd'.
| DataFormatError String
deriving (Eq, Typeable)
instance Show DecompressError where
show TruncatedInput = modprefix "premature end of compressed data stream"
show DictionaryRequired = modprefix "compressed data stream requires custom dictionary"
show DictionaryMismatch = modprefix "given dictionary does not match the expected one"
show (DataFormatError detail) = modprefix ("compressed data stream format error (" ++ detail ++ ")")
modprefix :: ShowS
modprefix = ("Codec.Compression.Zlib: " ++)
instance Exception DecompressError
-- | A fold over the 'DecompressStream' in the given monad.
--
-- One way to look at this is that it runs the stream, using callback functions
-- for the four stream events.
--
foldDecompressStream :: Monad m
=> ((S.ByteString -> m a) -> m a)
-> (S.ByteString -> m a -> m a)
-> (S.ByteString -> m a)
-> (DecompressError -> m a)
-> DecompressStream m -> m a
foldDecompressStream input output end err = fold
where
fold (DecompressInputRequired next) =
input (\x -> next x >>= fold)
fold (DecompressOutputAvailable outchunk next) =
output outchunk (next >>= fold)
fold (DecompressStreamEnd inchunk) = end inchunk
fold (DecompressStreamError derr) = err derr
-- | A variant on 'foldCompressStream' that is pure rather than operating in a
-- monad and where the input is provided by a lazy 'L.ByteString'. So we only
-- have to deal with the output, end and error parts, making it like a foldr on
-- a list of output chunks.
--
-- For example:
--
-- > toChunks = foldDecompressStreamWithInput (:) [] throw
--
foldDecompressStreamWithInput :: (S.ByteString -> a -> a)
-> (L.ByteString -> a)
-> (DecompressError -> a)
-> (forall s. DecompressStream (ST s))
-> L.ByteString
-> a
foldDecompressStreamWithInput chunk end err = \s lbs ->
runST (fold s (L.toChunks lbs))
where
fold (DecompressInputRequired next) [] =
next S.empty >>= \strm -> fold strm []
fold (DecompressInputRequired next) (inchunk:inchunks) =
next inchunk >>= \s -> fold s inchunks
fold (DecompressOutputAvailable outchunk next) inchunks = do
r <- next >>= \s -> fold s inchunks
return $ chunk outchunk r
fold (DecompressStreamEnd inchunk) inchunks =
return $ end (L.fromChunks (inchunk:inchunks))
fold (DecompressStreamError derr) _ =
return $ err derr
-- $incremental-compression
-- The pure 'compress' and 'decompress' functions are streaming in the sense
-- that they can produce output without demanding all input, however they need
-- the input data stream as a lazy 'L.ByteString'. Having the input data
-- stream as a lazy 'L.ByteString' often requires using lazy I\/O which is not
-- appropriate in all cicumstances.
--
-- For these cases an incremental interface is more appropriate. This interface
-- allows both incremental input and output. Chunks of input data are supplied
-- one by one (e.g. as they are obtained from an input source like a file or
-- network source). Output is also produced chunk by chunk.
--
-- The incremental input and output is managed via the 'CompressStream' and
-- 'DecompressStream' types. They represents the unfolding of the process of
-- compressing and decompressing. They operates in either the 'ST' or 'IO'
-- monads. They can be lifted into other incremental abstractions like pipes or
-- conduits, or they can be used directly in the following style.
-- $using-incremental-compression
--
-- In a loop:
--
-- * Inspect the status of the stream
--
-- * When it is 'CompressInputRequired' then you should call the action,
-- passing a chunk of input (or 'BS.empty' when no more input is available)
-- to get the next state of the stream and continue the loop.
--
-- * When it is 'CompressOutputAvailable' then do something with the given
-- chunk of output, and call the action to get the next state of the stream
-- and continue the loop.
--
-- * When it is 'CompressStreamEnd' then terminate the loop.
--
-- Note that you cannot stop as soon as you have no more input, you need to
-- carry on until all the output has been collected, i.e. until you get to
-- 'CompressStreamEnd'.
--
-- Here is an example where we get input from one file handle and send the
-- compressed output to another file handle.
--
-- > go :: Handle -> Handle -> CompressStream IO -> IO ()
-- > go inh outh (CompressInputRequired next) = do
-- > inchunk <- BS.hGet inh 4096
-- > go inh outh =<< next inchunk
-- > go inh outh (CompressOutputAvailable outchunk next) =
-- > BS.hPut outh outchunk
-- > go inh outh =<< next
-- > go _ _ CompressStreamEnd = return ()
--
-- The same can be achieved with 'foldCompressStream':
--
-- > foldCompressStream
-- > (\next -> do inchunk <- BS.hGet inh 4096; next inchunk)
-- > (\outchunk next -> do BS.hPut outh outchunk; next)
-- > (return ())
-- $using-incremental-decompression
--
-- The use of 'DecompressStream' is very similar to 'CompressStream' but with
-- a few differences:
--
-- * There is the extra possibility of a 'DecompressStreamError'
--
-- * There can be extra trailing data after a compressed stream, and the
-- 'DecompressStreamEnd' includes that.
--
-- Otherwise the same loop style applies, and there are fold functions.
-- | The unfolding of the compression process, where you provide a sequence
-- of uncompressed data chunks as input and receive a sequence of compressed
-- data chunks as output. The process is incremental, in that the demand for
-- input and provision of output are interleaved.
--
data CompressStream m =
CompressInputRequired {
compressSupplyInput :: S.ByteString -> m (CompressStream m)
}
| CompressOutputAvailable {
compressOutput :: !S.ByteString,
compressNext :: m (CompressStream m)
}
| CompressStreamEnd
-- | A fold over the 'CompressStream' in the given monad.
--
-- One way to look at this is that it runs the stream, using callback functions
-- for the three stream events.
--
foldCompressStream :: Monad m
=> ((S.ByteString -> m a) -> m a)
-> (S.ByteString -> m a -> m a)
-> m a
-> CompressStream m -> m a
foldCompressStream input output end = fold
where
fold (CompressInputRequired next) =
input (\x -> next x >>= fold)
fold (CompressOutputAvailable outchunk next) =
output outchunk (next >>= fold)
fold CompressStreamEnd =
end
-- | A variant on 'foldCompressStream' that is pure rather than operating in a
-- monad and where the input is provided by a lazy 'L.ByteString'. So we only
-- have to deal with the output and end parts, making it just like a foldr on a
-- list of output chunks.
--
-- For example:
--
-- > toChunks = foldCompressStreamWithInput (:) []
--
foldCompressStreamWithInput :: (S.ByteString -> a -> a)
-> a
-> (forall s. CompressStream (ST s))
-> L.ByteString
-> a
foldCompressStreamWithInput chunk end = \s lbs ->
runST (fold s (L.toChunks lbs))
where
fold (CompressInputRequired next) [] =
next S.empty >>= \strm -> fold strm []
fold (CompressInputRequired next) (inchunk:inchunks) =
next inchunk >>= \s -> fold s inchunks
fold (CompressOutputAvailable outchunk next) inchunks = do
r <- next >>= \s -> fold s inchunks
return $ chunk outchunk r
fold CompressStreamEnd _inchunks =
return end
-- | Compress a data stream provided as a lazy 'L.ByteString'.
--
-- There are no expected error conditions. All input data streams are valid. It
-- is possible for unexpected errors to occur, such as running out of memory,
-- or finding the wrong version of the zlib C library, these are thrown as
-- exceptions.
--
compress :: Stream.Format -> CompressParams -> L.ByteString -> L.ByteString
-- | Incremental compression in the 'ST' monad. Using 'ST' makes it possible
-- to write pure /lazy/ functions while making use of incremental compression.
--
compressST :: Stream.Format -> CompressParams -> CompressStream (ST s)
-- | Incremental compression in the 'IO' monad.
--
compressIO :: Stream.Format -> CompressParams -> CompressStream IO
compress format params = foldCompressStreamWithInput
L.Chunk L.Empty
(compressStreamST format params)
compressST format params = compressStreamST format params
compressIO format params = compressStreamIO format params
compressStream :: Stream.Format -> CompressParams -> S.ByteString
-> Stream (CompressStream Stream)
compressStream format (CompressParams compLevel method bits memLevel
strategy initChunkSize mdict) =
\chunk -> do
Stream.deflateInit format compLevel method bits memLevel strategy
setDictionary mdict
case chunk of
_ | S.null chunk ->
fillBuffers 20 --gzip header is 20 bytes, others even smaller
S.PS inFPtr offset length -> do
Stream.pushInputBuffer inFPtr offset length
fillBuffers initChunkSize
where
-- we flick between two states:
-- * where one or other buffer is empty
-- - in which case we refill one or both
-- * where both buffers are non-empty
-- - in which case we compress until a buffer is empty
fillBuffers :: Int -> Stream (CompressStream Stream)
fillBuffers outChunkSize = do
#ifdef DEBUG
Stream.consistencyCheck
#endif
-- in this state there are two possabilities:
-- * no outbut buffer space is available
-- - in which case we must make more available
-- * no input buffer is available
-- - in which case we must supply more
inputBufferEmpty <- Stream.inputBufferEmpty
outputBufferFull <- Stream.outputBufferFull
assert (inputBufferEmpty || outputBufferFull) $ return ()
when outputBufferFull $ do
outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize)
Stream.pushOutputBuffer outFPtr 0 outChunkSize
if inputBufferEmpty
then return $ CompressInputRequired $ \chunk ->
case chunk of
_ | S.null chunk -> drainBuffers True
S.PS inFPtr offset length -> do
Stream.pushInputBuffer inFPtr offset length
drainBuffers False
else drainBuffers False
drainBuffers :: Bool -> Stream (CompressStream Stream)
drainBuffers lastChunk = do
inputBufferEmpty' <- Stream.inputBufferEmpty
outputBufferFull' <- Stream.outputBufferFull
assert(not outputBufferFull'
&& (lastChunk || not inputBufferEmpty')) $ return ()
-- this invariant guarantees we can always make forward progress
-- and that therefore a BufferError is impossible
let flush = if lastChunk then Stream.Finish else Stream.NoFlush
status <- Stream.deflate flush
case status of
Stream.Ok -> do
outputBufferFull <- Stream.outputBufferFull
if outputBufferFull
then do (outFPtr, offset, length) <- Stream.popOutputBuffer
let chunk = S.PS outFPtr offset length
return $ CompressOutputAvailable chunk $ do
fillBuffers defaultCompressBufferSize
else do fillBuffers defaultCompressBufferSize
Stream.StreamEnd -> do
inputBufferEmpty <- Stream.inputBufferEmpty
assert inputBufferEmpty $ return ()
outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable
if outputBufferBytesAvailable > 0
then do (outFPtr, offset, length) <- Stream.popOutputBuffer
let chunk = S.PS outFPtr offset length
Stream.finalise
return $ CompressOutputAvailable chunk (return CompressStreamEnd)
else do Stream.finalise
return CompressStreamEnd
Stream.Error code msg -> case code of
Stream.BufferError -> fail "BufferError should be impossible!"
Stream.NeedDict _ -> fail "NeedDict is impossible!"
_ -> fail msg
-- Set the custom dictionary, if we were provided with one
-- and if the format supports it (zlib and raw, not gzip).
setDictionary :: Maybe S.ByteString -> Stream ()
setDictionary (Just dict)
| Stream.formatSupportsDictionary format = do
status <- Stream.deflateSetDictionary dict
case status of
Stream.Ok -> return ()
Stream.Error _ msg -> fail msg
_ -> fail "error when setting deflate dictionary"
setDictionary _ = return ()
-- | Decompress a data stream provided as a lazy 'L.ByteString'.
--
-- It will throw an exception if any error is encountered in the input data.
-- If you need more control over error handling then use one the incremental
-- versions, 'decompressST' or 'decompressIO'.
--
decompress :: Stream.Format -> DecompressParams -> L.ByteString -> L.ByteString
-- | Incremental decompression in the 'ST' monad. Using 'ST' makes it possible
-- to write pure /lazy/ functions while making use of incremental decompression.
--
decompressST :: Stream.Format -> DecompressParams -> DecompressStream (ST s)
-- | Incremental decompression in the 'IO' monad.
--
decompressIO :: Stream.Format -> DecompressParams -> DecompressStream IO
decompress format params = foldDecompressStreamWithInput
L.Chunk (const L.Empty) throw
(decompressStreamST format params)
decompressST format params = decompressStreamST format params
decompressIO format params = decompressStreamIO format params
decompressStream :: Stream.Format -> DecompressParams
-> Bool -> S.ByteString
-> Stream (DecompressStream Stream)
decompressStream format (DecompressParams bits initChunkSize mdict allMembers)
resume =
\chunk -> do
inputBufferEmpty <- Stream.inputBufferEmpty
outputBufferFull <- Stream.outputBufferFull
assert inputBufferEmpty $
if resume then assert (format == Stream.gzipFormat && allMembers) $
Stream.inflateReset
else assert outputBufferFull $
Stream.inflateInit format bits
case chunk of
_ | S.null chunk -> do
-- special case to avoid demanding more input again
-- always an error anyway
when outputBufferFull $ do
let outChunkSize = 1
outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize)
Stream.pushOutputBuffer outFPtr 0 outChunkSize
drainBuffers True
S.PS inFPtr offset length -> do
Stream.pushInputBuffer inFPtr offset length
-- Normally we start with no output buffer (so counts as full) but
-- if we're resuming then we'll usually still have output buffer
-- space available
assert (if not resume then outputBufferFull else True) $ return ()
if outputBufferFull
then fillBuffers initChunkSize
else drainBuffers False
where
-- we flick between two states:
-- * where one or other buffer is empty
-- - in which case we refill one or both
-- * where both buffers are non-empty
-- - in which case we compress until a buffer is empty
fillBuffers :: Int
-> Stream (DecompressStream Stream)
fillBuffers outChunkSize = do
#ifdef DEBUG
Stream.consistencyCheck
#endif
-- in this state there are two possabilities:
-- * no outbut buffer space is available
-- - in which case we must make more available
-- * no input buffer is available
-- - in which case we must supply more
inputBufferEmpty <- Stream.inputBufferEmpty
outputBufferFull <- Stream.outputBufferFull
assert (inputBufferEmpty || outputBufferFull) $ return ()
when outputBufferFull $ do
outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize)
Stream.pushOutputBuffer outFPtr 0 outChunkSize
if inputBufferEmpty
then return $ DecompressInputRequired $ \chunk ->
case chunk of
_ | S.null chunk -> drainBuffers True
S.PS inFPtr offset length -> do
Stream.pushInputBuffer inFPtr offset length
drainBuffers False
else drainBuffers False
drainBuffers :: Bool -> Stream (DecompressStream Stream)
drainBuffers lastChunk = do
inputBufferEmpty' <- Stream.inputBufferEmpty
outputBufferFull' <- Stream.outputBufferFull
assert(not outputBufferFull'
&& (lastChunk || not inputBufferEmpty')) $ return ()
-- this invariant guarantees we can always make forward progress or at
-- least if a BufferError does occur that it must be due to a premature EOF
status <- Stream.inflate Stream.NoFlush
case status of
Stream.Ok -> do
outputBufferFull <- Stream.outputBufferFull
if outputBufferFull
then do (outFPtr, offset, length) <- Stream.popOutputBuffer
let chunk = S.PS outFPtr offset length
return $ DecompressOutputAvailable chunk $ do
fillBuffers defaultDecompressBufferSize
else do fillBuffers defaultDecompressBufferSize
Stream.StreamEnd -> do
-- The decompressor tells us we're done.
-- Note that there may be input bytes still available if the stream is
-- embeded in some other data stream, so we return any trailing data.
inputBufferEmpty <- Stream.inputBufferEmpty
if inputBufferEmpty
then do finish (DecompressStreamEnd S.empty)
else do (inFPtr, offset, length) <- Stream.popRemainingInputBuffer
let inchunk = S.PS inFPtr offset length
finish (DecompressStreamEnd inchunk)
Stream.Error code msg -> case code of
Stream.BufferError -> finish (DecompressStreamError TruncatedInput)
Stream.NeedDict adler -> do
err <- setDictionary adler mdict
case err of
Just streamErr -> finish streamErr
Nothing -> drainBuffers lastChunk
Stream.DataError -> finish (DecompressStreamError (DataFormatError msg))
_ -> fail msg
-- Note even if we end with an error we still try to flush the last chunk if
-- there is one. The user just has to decide what they want to trust.
finish end = do
outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable
if outputBufferBytesAvailable > 0
then do (outFPtr, offset, length) <- Stream.popOutputBuffer
return (DecompressOutputAvailable (S.PS outFPtr offset length) (return end))
else return end
setDictionary :: Stream.DictionaryHash -> Maybe S.ByteString
-> Stream (Maybe (DecompressStream Stream))
setDictionary _adler Nothing =
return $ Just (DecompressStreamError DictionaryRequired)
setDictionary _adler (Just dict) = do
status <- Stream.inflateSetDictionary dict
case status of
Stream.Ok -> return Nothing
Stream.Error Stream.DataError _ ->
return $ Just (DecompressStreamError DictionaryMismatch)
_ -> fail "error when setting inflate dictionary"
------------------------------------------------------------------------------
mkStateST :: ST s (Stream.State s)
mkStateIO :: IO (Stream.State RealWorld)
mkStateST = strictToLazyST Stream.mkState
mkStateIO = stToIO Stream.mkState
runStreamST :: Stream a -> Stream.State s -> ST s (a, Stream.State s)
runStreamIO :: Stream a -> Stream.State RealWorld -> IO (a, Stream.State RealWorld)
runStreamST strm zstate = strictToLazyST (Unsafe.unsafeIOToST noDuplicate >> Stream.runStream strm zstate)
runStreamIO strm zstate = stToIO (Stream.runStream strm zstate)
compressStreamIO :: Stream.Format -> CompressParams -> CompressStream IO
compressStreamIO format params =
CompressInputRequired {
compressSupplyInput = \chunk -> do
zstate <- mkStateIO
let next = compressStream format params
(strm', zstate') <- runStreamIO (next chunk) zstate
return (go strm' zstate')
}
where
go :: CompressStream Stream -> Stream.State RealWorld -> CompressStream IO
go (CompressInputRequired next) zstate =
CompressInputRequired {
compressSupplyInput = \chunk -> do
(strm', zstate') <- runStreamIO (next chunk) zstate
return (go strm' zstate')
}
go (CompressOutputAvailable chunk next) zstate =
CompressOutputAvailable chunk $ do
(strm', zstate') <- runStreamIO next zstate
return (go strm' zstate')
go CompressStreamEnd _ = CompressStreamEnd
compressStreamST :: Stream.Format -> CompressParams -> CompressStream (ST s)
compressStreamST format params =
CompressInputRequired {
compressSupplyInput = \chunk -> do
zstate <- mkStateST
let next = compressStream format params
(strm', zstate') <- runStreamST (next chunk) zstate
return (go strm' zstate')
}
where
go :: CompressStream Stream -> Stream.State s -> CompressStream (ST s)
go (CompressInputRequired next) zstate =
CompressInputRequired {
compressSupplyInput = \chunk -> do
(strm', zstate') <- runStreamST (next chunk) zstate
return (go strm' zstate')
}
go (CompressOutputAvailable chunk next) zstate =
CompressOutputAvailable chunk $ do
(strm', zstate') <- runStreamST next zstate
return (go strm' zstate')
go CompressStreamEnd _ = CompressStreamEnd
decompressStreamIO :: Stream.Format -> DecompressParams -> DecompressStream IO
decompressStreamIO format params =
DecompressInputRequired $ \chunk -> do
zstate <- mkStateIO
let next = decompressStream format params False
(strm', zstate') <- runStreamIO (next chunk) zstate
go strm' zstate' (S.null chunk)
where
go :: DecompressStream Stream -> Stream.State RealWorld -> Bool
-> IO (DecompressStream IO)
go (DecompressInputRequired next) zstate !_ =
return $ DecompressInputRequired $ \chunk -> do
(strm', zstate') <- runStreamIO (next chunk) zstate
go strm' zstate' (S.null chunk)
go (DecompressOutputAvailable chunk next) zstate !eof =
return $ DecompressOutputAvailable chunk $ do
(strm', zstate') <- runStreamIO next zstate
go strm' zstate' eof
go (DecompressStreamEnd unconsumed) zstate !eof
| format == Stream.gzipFormat
, decompressAllMembers params
, not eof = tryFollowingStream unconsumed zstate
| otherwise = finaliseStreamEnd unconsumed zstate
go (DecompressStreamError err) zstate !_ = finaliseStreamError err zstate
tryFollowingStream :: S.ByteString -> Stream.State RealWorld -> IO (DecompressStream IO)
tryFollowingStream chunk zstate = case S.length chunk of
0 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of
0 -> finaliseStreamEnd S.empty zstate
1 | S.head chunk' /= 0x1f
-> finaliseStreamEnd chunk' zstate
1 -> return $ DecompressInputRequired $ \chunk'' -> case S.length chunk'' of
0 -> finaliseStreamEnd chunk' zstate
_ -> checkHeaderSplit (S.head chunk') chunk'' zstate
_ -> checkHeader chunk' zstate
1 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of
0 -> finaliseStreamEnd chunk zstate
_ -> checkHeaderSplit (S.head chunk) chunk' zstate
_ -> checkHeader chunk zstate
checkHeaderSplit :: Word8 -> S.ByteString -> Stream.State RealWorld -> IO (DecompressStream IO)
checkHeaderSplit 0x1f chunk zstate
| S.head chunk == 0x8b = do
let resume = decompressStream format params True (S.pack [0x1f, 0x8b])
if S.length chunk > 1
then do
-- have to handle the remaining data in this chunk
(DecompressInputRequired next, zstate') <- runStreamIO resume zstate
(strm', zstate'') <- runStreamIO (next (S.tail chunk)) zstate'
go strm' zstate'' False
else do
-- subtle special case when the chunk tail is empty
-- yay for QC tests
(strm, zstate') <- runStreamIO resume zstate
go strm zstate' False
checkHeaderSplit byte chunk zstate =
finaliseStreamEnd (S.cons byte chunk) zstate
checkHeader :: S.ByteString -> Stream.State RealWorld -> IO (DecompressStream IO)
checkHeader chunk zstate
| S.index chunk 0 == 0x1f
, S.index chunk 1 == 0x8b = do
let resume = decompressStream format params True chunk
(strm', zstate') <- runStreamIO resume zstate
go strm' zstate' False
checkHeader chunk zstate = finaliseStreamEnd chunk zstate
finaliseStreamEnd unconsumed zstate = do
_ <- runStreamIO Stream.finalise zstate
return (DecompressStreamEnd unconsumed)
finaliseStreamError err zstate = do
_ <- runStreamIO Stream.finalise zstate
return (DecompressStreamError err)
decompressStreamST :: Stream.Format -> DecompressParams -> DecompressStream (ST s)
decompressStreamST format params =
DecompressInputRequired $ \chunk -> do
zstate <- mkStateST
let next = decompressStream format params False
(strm', zstate') <- runStreamST (next chunk) zstate
go strm' zstate' (S.null chunk)
where
go :: DecompressStream Stream -> Stream.State s -> Bool
-> ST s (DecompressStream (ST s))
go (DecompressInputRequired next) zstate !_ =
return $ DecompressInputRequired $ \chunk -> do
(strm', zstate') <- runStreamST (next chunk) zstate
go strm' zstate' (S.null chunk)
go (DecompressOutputAvailable chunk next) zstate !eof =
return $ DecompressOutputAvailable chunk $ do
(strm', zstate') <- runStreamST next zstate
go strm' zstate' eof
go (DecompressStreamEnd unconsumed) zstate !eof
| format == Stream.gzipFormat
, decompressAllMembers params
, not eof = tryFollowingStream unconsumed zstate
| otherwise = finaliseStreamEnd unconsumed zstate
go (DecompressStreamError err) zstate !_ = finaliseStreamError err zstate
tryFollowingStream :: S.ByteString -> Stream.State s -> ST s (DecompressStream (ST s))
tryFollowingStream chunk zstate =
case S.length chunk of
0 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of
0 -> finaliseStreamEnd S.empty zstate
1 | S.head chunk' /= 0x1f
-> finaliseStreamEnd chunk' zstate
1 -> return $ DecompressInputRequired $ \chunk'' -> case S.length chunk'' of
0 -> finaliseStreamEnd chunk' zstate
_ -> checkHeaderSplit (S.head chunk') chunk'' zstate
_ -> checkHeader chunk' zstate
1 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of
0 -> finaliseStreamEnd chunk zstate
_ -> checkHeaderSplit (S.head chunk) chunk' zstate
_ -> checkHeader chunk zstate
checkHeaderSplit :: Word8 -> S.ByteString -> Stream.State s -> ST s (DecompressStream (ST s))
checkHeaderSplit 0x1f chunk zstate
| S.head chunk == 0x8b = do
let resume = decompressStream format params True (S.pack [0x1f, 0x8b])
if S.length chunk > 1
then do
-- have to handle the remaining data in this chunk
(DecompressInputRequired next, zstate') <- runStreamST resume zstate
(strm', zstate'') <- runStreamST (next (S.tail chunk)) zstate'
go strm' zstate'' False
else do
-- subtle special case when the chunk tail is empty
-- yay for QC tests
(strm, zstate') <- runStreamST resume zstate
go strm zstate' False
checkHeaderSplit byte chunk zstate =
finaliseStreamEnd (S.cons byte chunk) zstate
checkHeader :: S.ByteString -> Stream.State s -> ST s (DecompressStream (ST s))
checkHeader chunk zstate
| S.index chunk 0 == 0x1f
, S.index chunk 1 == 0x8b = do
let resume = decompressStream format params True chunk
(strm', zstate') <- runStreamST resume zstate
go strm' zstate' False
checkHeader chunk zstate = finaliseStreamEnd chunk zstate
finaliseStreamEnd unconsumed zstate = do
_ <- runStreamST Stream.finalise zstate
return (DecompressStreamEnd unconsumed)
finaliseStreamError err zstate = do
_ <- runStreamST Stream.finalise zstate
return (DecompressStreamError err)