cga/Algebra/Vector.hs
hasufell 2ccb52eb62
VEC: Fix the inRange function
It now takes a PROPER square, as in ((xmin, ymin), (xmax, ymax))
instead of ((xmin, xmax), (ymin, ymax)) and also works
with negative values.

Because the meaning of the arguments has changed, we also
had to fix all uses of it.
2014-12-17 03:35:33 +01:00

178 lines
4.2 KiB
Haskell

{-# OPTIONS_HADDOCK ignore-exports #-}
module Algebra.Vector where
import Control.Applicative
import Control.Arrow ((***))
import Data.List (sortBy)
import Diagrams.TwoD.Types
import Graphics.Gloss.Geometry.Line
import GHC.Float
import MyPrelude
type Vec = R2
type PT = P2
type Coord = (Double, Double)
type Segment = (PT, PT)
type Square = (Coord, Coord)
data Alignment = CW
| CCW
| CL
deriving (Eq)
-- |Convert two dimensions such as (xmin, xmax) and (ymin, ymax)
-- to proper square coordinates, as in:
-- ((xmin, ymin), (xmax, ymax))
dimToSquare :: (Double, Double) -- ^ x dimension
-> (Double, Double) -- ^ y dimension
-> Square -- ^ square describing those dimensions
dimToSquare (x1, x2) (y1, y2) = ((x1, y1), (x2, y2))
-- |Checks whether the Point is in a given Square.
inRange :: Square -- ^ the square: ((xmin, ymin), (xmax, ymax))
-> PT -- ^ Coordinate
-> Bool -- ^ result
inRange ((xmin, ymin), (xmax, ymax)) p
= x >= min xmin xmax
&& x <= max xmin xmax
&& y >= min ymin ymax
&& y <= max ymin ymax
where
(x, y) = unp2 p
-- |Get the angle between two vectors.
getAngle :: Vec -> Vec -> Double
getAngle a b =
acos .
flip (/) (vecLength a * vecLength b) .
scalarProd a $
b
-- |Get the length of a vector.
vecLength :: Vec -> Double
vecLength v = sqrt (x^(2 :: Int) + y^(2 :: Int))
where
(x, y) = unr2 v
-- |Compute the scalar product of two vectors.
scalarProd :: Vec -> Vec -> Double
scalarProd v1 v2 = a1 * b1 + a2 * b2
where
(a1, a2) = unr2 v1
(b1, b2) = unr2 v2
-- |Construct a vector that points to a point from the origin.
pt2Vec :: PT -> Vec
pt2Vec = r2 . unp2
-- |Give the point which is at the coordinates the vector
-- points to from the origin.
vec2Pt :: Vec -> PT
vec2Pt = p2 . unr2
-- |Construct a vector between two points.
vp2 :: PT -- ^ vector origin
-> PT -- ^ vector points here
-> Vec
vp2 a b = pt2Vec b - pt2Vec a
-- |Computes the determinant of 3 points.
det :: PT -> PT -> PT -> Double
det a b c =
(bx - ax) *
(cy - ay) -
(by - ay) *
(cx - ax)
where
(ax, ay) = unp2 a
(bx, by) = unp2 b
(cx, cy) = unp2 c
-- |Get the point where two lines intesect, if any.
intersectSeg' :: Segment -> Segment -> Maybe PT
intersectSeg' (a, b) (c, d) =
glossToPt <$> intersectSegSeg (ptToGloss a)
(ptToGloss b)
(ptToGloss c)
(ptToGloss d)
where
ptToGloss = (double2Float *** double2Float) <$> unp2
glossToPt = p2 . (float2Double *** float2Double)
-- |Get the orientation of 3 points which can either be
-- * clock-wise
-- * counter-clock-wise
-- * collinear
getOrient :: PT -> PT -> PT -> Alignment
getOrient a b c = case compare (det a b c) 0 of
LT -> CW
GT -> CCW
EQ -> CL
--- |Checks if 3 points a,b,c do not build a clockwise triangle by
--- connecting a-b-c. This is done by computing the determinant and
--- checking the algebraic sign.
notcw :: PT -> PT -> PT -> Bool
notcw a b c = case getOrient a b c of
CW -> False
_ -> True
-- |Sort X and Y coordinates lexicographically.
sortedXY :: [PT] -> [PT]
sortedXY = fmap p2 . sortLex . fmap unp2
-- |Sort all points according to their X-coordinates only.
sortedX :: [PT] -> [PT]
sortedX xs =
fmap p2
. sortBy (\(a1, _) (a2, _) -> compare a1 a2)
$ fmap unp2 xs
-- |Sort all points according to their Y-coordinates only.
sortedY :: [PT] -> [PT]
sortedY xs =
fmap p2
. sortBy (\(_, b1) (_, b2) -> compare b1 b2)
$ fmap unp2 xs
-- |Apply a function on the coordinates of a point.
onPT :: (Coord -> Coord) -> PT -> PT
onPT f = p2 . f . unp2
-- |Compare the y-coordinate of two points.
ptCmpY :: PT -> PT -> Ordering
ptCmpY p1' p2' = compare ((snd . unp2) p1') ((snd . unp2) p2')
-- |Compare the x-coordinate of two points.
ptCmpX :: PT -> PT -> Ordering
ptCmpX p1' p2' = compare ((fst . unp2) p1') ((fst . unp2) p2')
posInfPT :: PT
posInfPT = p2 (read "Infinity", read "Infinity")
negInfPT :: PT
negInfPT = p2 (negate . read $ "Infinity", negate . read $ "Infinity")