cga/LinearAlgebra/Vector.hs
2014-10-09 03:27:02 +02:00

76 lines
1.7 KiB
Haskell

{-# OPTIONS_HADDOCK ignore-exports #-}
module LinearAlgebra.Vector where
import Diagrams.TwoD.Types
type Vec = R2
type PT = P2
type Coord = (Double, Double)
-- |Checks whether the Point is in a given dimension.
inRange :: Coord -- ^ X dimension
-> Coord -- ^ Y dimension
-> PT -- ^ Coordinates
-> Bool -- ^ result
inRange (xlD, xuD) (ylD, yuD) p
= x <= xuD && x >= xlD && y <= yuD && y >= ylD
where
(x, y) = unp2 p
-- |Get the angle between two vectors.
getAngle :: Vec -> Vec -> Double
getAngle a b = acos .
flip (/) (vecLength a * vecLength b) .
scalarProd a $
b
-- |Get the length of a vector.
vecLength :: Vec -> Double
vecLength v = sqrt (x^2 + y^2)
where
(x, y) = unr2 v
-- |Compute the scalar product of two vectors.
scalarProd :: Vec -> Vec -> Double
scalarProd v1 v2 = a1 * b1 + a2 * b2
where
(a1, a2) = unr2 v1
(b1, b2) = unr2 v2
-- |Construct a vector that points to a point from the origin.
pt2Vec :: PT -> Vec
pt2Vec = r2 . unp2
-- |Give the point which is at the coordinates the vector
-- points to from the origin.
vec2Pt :: Vec -> PT
vec2Pt = p2 . unr2
-- |Construct a vector between two points.
vp2 :: PT -- ^ vector origin
-> PT -- ^ vector points here
-> Vec
vp2 a b = (pt2Vec b) - (pt2Vec a)
-- |Checks if 3 points a,b,c build a counterclock wise triangle by
-- connecting a-b-c. This is done by computing the determinant and
-- checking the algebraic sign.
ccw :: PT -> PT -> PT -> Bool
ccw a b c = (bx - ax) *
(cy - ay) -
(by - ay) *
(cx - ax) >= 0
where
(ax, ay) = unp2 a
(bx, by) = unp2 b
(cx, cy) = unp2 c