cga/Algorithms/KDTree/KDTree.hs

133 lines
4.3 KiB
Haskell

module Algorithms.KDTree.KDTree where
import Algebra.VectorTypes
import Algebra.Vector
import Data.Maybe (fromJust, catMaybes)
import Diagrams.TwoD.Types
import MyPrelude (pivot,if',Not, not')
import Safe
-- |The KDTree data structure.
data KDTree a
-- |An empty node.
= KTNil
-- |A node with a value and a left and right child
| KTNode (KDTree a) a Direction (KDTree a)
deriving (Show, Eq)
data Direction = Vertical
| Horizontal
deriving (Show, Eq, Enum)
instance Not Direction where
not' Vertical = Horizontal
not' Horizontal = Vertical
-- |Construct a kd-tree from a list of points in O(n log n).
kdTree :: [PT] -- ^ list of points to construct the kd-tree from
-> Direction -- ^ initial direction of the root-node
-> KDTree PT -- ^ resulting kd-tree
kdTree xs' = go (sortedX xs') (sortedY xs')
where
go [] _ _ = KTNil
go _ [] _ = KTNil
go xs ys dir =
KTNode (go x1 y1 (not' dir))
(fromJust . pivot $ if' (dir == Vertical) ys xs)
dir
(go x2 y2 (not' dir))
where
((x1, x2), (y1, y2)) = if' (dir == Vertical)
(partitionY (xs, ys))
(partitionX (xs, ys))
-- |Partitions two sorted list of points X and Y against a pivot.
-- If you want to partition against the pivot of Y, then you pass
-- partition' (pivot ys) (xs, ys)
-- and get ((x1, x2), (y1, y2)).
-- If you want to partition against the pivot of X, then you pass
-- partition' (pivot xs) (ys, xs)
-- and get ((y1, y2), (x1, x2)).
partition' :: PT -- ^ the pivot to partition against
-> ([PT], [PT]) -- ^ both lists (X, Y) or (Y, X)
-> (([PT], [PT]), ([PT], [PT])) -- ^ ((x1, x2), (y1, y2)) or
-- ((y1, y2), (x1, x2))
partition' piv (xs, ys) = ((x1, x2), (y1, y2))
where
y1 = takeWhile (/= piv) ys
y2 = tailDef [] . dropWhile (/= piv) $ ys
x1 = foldr (\x y -> [x | x `elem` y1] ++ y) [] xs
x2 = foldr (\x y -> [x | x `elem` y2] ++ y) [] xs
-- |Partition two sorted lists of points X and Y against the pivot of
-- Y. This function is unsafe as it does not check if there is a valid
-- pivot.
partitionY :: ([PT], [PT]) -- ^ both lists (X, Y)
-> (([PT], [PT]), ([PT], [PT])) -- ^ ((x1, x2), (y1, y2))
partitionY (xs, ys) = partition' (fromJust . pivot $ ys) (xs, ys)
-- |Partition two sorted lists of points X and Y against the pivot of
-- X. This function is unsafe as it does not check if there is a valid
-- pivot.
partitionX :: ([PT], [PT]) -- ^ both lists (X, Y)
-> (([PT], [PT]), ([PT], [PT])) -- ^ ((x1, x2), (y1, y2))
partitionX (xs, ys) = (\(x, y) -> (y, x))
. partition' (fromJust . pivot $ xs) $ (ys, xs)
-- |Execute a range search in O(log n).
rangeSearch :: KDTree PT -> Square -> [PT]
rangeSearch KTNil _ = []
rangeSearch (KTNode ln pt Vertical rn) sq@(_, (y1, y2)) =
[pt | inRange sq pt]
++ (if y1 < (snd . unp2 $ pt) then rangeSearch ln sq else [])
++ (if (snd . unp2 $ pt) < y2 then rangeSearch rn sq else [])
rangeSearch (KTNode ln pt Horizontal rn) sq@((x1, x2), _) =
[pt | inRange sq pt]
++ (if x1 < (fst . unp2 $ pt) then rangeSearch ln sq else [])
++ (if (fst . unp2 $ pt) < x2 then rangeSearch rn sq else [])
-- |Left fold over ALL tree nodes.
kdFoldl :: (a -> KDTree b -> a) -> a -> KDTree b -> a
kdFoldl f sv kd@(KTNode ln _ _ rn) = foldl (kdFoldl f) (f sv kd) [ln, rn]
kdFoldl f sv kd = f sv kd
-- |Right fold over ALL tree nodes.
kdFoldr :: (KDTree b -> a -> a) -> a -> KDTree b -> a
kdFoldr f sv kd = kdFoldl (\g b x -> g (f b x)) id kd sv
-- |Get all values of a tree.
getValS :: KDTree a -> [a]
getValS = catMaybes . kdFoldl (\x y -> x ++ [getVal y]) []
-- |Whether the tree is a leaf.
isLeaf :: KDTree a -> Bool
isLeaf (KTNode KTNil _ _ KTNil) = True
isLeaf _ = False
-- |Get the value of the root node of the tree. Returns Nothing if it's a
-- leaf.
getVal :: KDTree a -> Maybe a
getVal (KTNode _ val _ _) = Just val
getVal _ = Nothing
-- |Get the direction of the current node/level.
getDirection :: KDTree a -> Maybe Direction
getDirection (KTNode _ _ dir _) = Just dir
getDirection _ = Nothing