402 lines
13 KiB
Haskell
402 lines
13 KiB
Haskell
{-# OPTIONS_HADDOCK ignore-exports #-}
|
|
|
|
module Graphics.Diagram.Plotter where
|
|
|
|
import Algebra.VectorTypes
|
|
import Algorithms.GrahamScan
|
|
import Algorithms.QuadTree
|
|
import Algorithms.KDTree
|
|
import Algorithms.PolygonIntersection
|
|
import Data.Maybe
|
|
import Data.Monoid
|
|
import Data.Tree
|
|
import Diagrams.Backend.Cairo
|
|
import Diagrams.Prelude hiding ((<>))
|
|
import Diagrams.TwoD.Layout.Tree
|
|
import Graphics.Diagram.Types
|
|
import Parser.PathParser
|
|
|
|
|
|
-- |Draw a list of points.
|
|
drawP :: [PT] -- ^ the points to draw
|
|
-> Double -- ^ dot size
|
|
-> Diagram Cairo R2 -- ^ the resulting diagram
|
|
drawP [] _ = mempty
|
|
drawP vt ds =
|
|
position (zip vt (repeat dot))
|
|
where
|
|
dot = circle ds :: Diagram Cairo R2
|
|
|
|
|
|
-- |Create a rectangle around a diagonal line, which has sw
|
|
-- as startpoint and nw as endpoint.
|
|
rectByDiagonal :: (Double, Double) -- ^ sw point
|
|
-> (Double, Double) -- ^ nw point
|
|
-> Diagram Cairo R2
|
|
rectByDiagonal (xmin, xmax) (ymin, ymax) =
|
|
rect (xmax - xmin) (ymax - ymin)
|
|
# moveTo (p2 ((xmax + xmin) / 2, (ymax + ymin) / 2))
|
|
|
|
|
|
-- |Creates a Diagram that shows the coordinates from the points
|
|
-- as dots. The points and thickness of the dots can be controlled
|
|
-- via DiagProp.
|
|
coordPoints :: Diag
|
|
coordPoints = Diag cp
|
|
where
|
|
cp p (Object vt) = drawP vt (dotSize p) # fc black # lc black
|
|
cp p (Objects vts) = drawP (concat vts) (dotSize p) # fc black # lc black
|
|
|
|
|
|
-- |Creates a Diagram from a point that shows the coordinates
|
|
-- in text format, such as "(1.0, 2.0)".
|
|
pointToTextCoord :: PT -> Diagram Cairo R2
|
|
pointToTextCoord pt =
|
|
text ("(" ++ (show . trim') x ++ ", " ++ (show . trim') y ++ ")") # scale 10
|
|
where
|
|
trim' :: Double -> Double
|
|
trim' x' = fromInteger . round $ x' * (10^(2 :: Int)) /
|
|
(10.0^^(2 :: Int))
|
|
(x, y) = unp2 pt
|
|
|
|
|
|
-- |Show coordinates as text above all points.
|
|
coordPointsText :: Diag
|
|
coordPointsText = Diag cpt
|
|
where
|
|
cpt p (Object vt) = drawT vt p
|
|
cpt p (Objects vts) = drawT (concat vts) p
|
|
drawT [] _ = mempty
|
|
drawT vt p
|
|
| showCoordText p = position $ zip vt (pointToTextCoord <$> vt)
|
|
# translate (r2 (0, 10))
|
|
| otherwise = mempty
|
|
|
|
|
|
-- |Draw the lines of the polygon.
|
|
polyLines :: Diag
|
|
polyLines = Diag pp
|
|
where
|
|
pp _ (Objects []) = mempty
|
|
pp _ (Objects (x:y:_)) =
|
|
strokePoly x <> strokePoly y
|
|
where
|
|
strokePoly x' = (strokeTrail . fromVertices $ x' ++ [head x'])
|
|
# moveTo (head x') # lc black
|
|
pp _ _ = mempty
|
|
|
|
|
|
-- |Show the intersection points of two polygons as red dots.
|
|
polyIntersection :: Diag
|
|
polyIntersection = Diag pi'
|
|
where
|
|
pi' p (Objects (x:y:_)) = drawP vtpi (dotSize p) # fc red # lc red
|
|
where
|
|
vtpi = intersectionPoints . sortLexPolys $ (sortLexPoly x, sortLexPoly y)
|
|
pi' _ _ = mempty
|
|
|
|
|
|
-- |Show the coordinate text of the intersection points of two polygons.
|
|
polyIntersectionText :: Diag
|
|
polyIntersectionText = Diag pit'
|
|
where
|
|
pit' p (Objects (x:y:_))
|
|
| showCoordText p = position . zip vtpi $ (pointToTextCoord # fc red <$> vtpi)
|
|
# translate (r2 (0, 10))
|
|
| otherwise = mempty
|
|
where
|
|
vtpi = intersectionPoints
|
|
. sortLexPolys
|
|
$ (sortLexPoly x,
|
|
sortLexPoly y)
|
|
pit' _ _ = mempty
|
|
|
|
|
|
-- |Create a diagram which shows the points of the convex hull.
|
|
convexHP :: Diag
|
|
convexHP = Diag chp
|
|
where
|
|
chp p (Object vt) = drawP (grahamCH vt) (dotSize p) # fc red # lc red
|
|
chp _ _ = mempty
|
|
|
|
|
|
-- |Show coordinates as text above the convex hull points.
|
|
convexHPText :: Diag
|
|
convexHPText = Diag chpt
|
|
where
|
|
chpt p (Object vt)
|
|
| showCoordText p =
|
|
position $ zip vtchf (pointToTextCoord <$> vtchf) # translate (r2 (0, 10))
|
|
| otherwise = mempty
|
|
where
|
|
vtchf = grahamCH vt
|
|
chpt _ _ = mempty
|
|
|
|
|
|
-- |Create a diagram which shows the lines along the convex hull
|
|
-- points.
|
|
convexHLs :: Diag
|
|
convexHLs = Diag chl
|
|
where
|
|
chl _ (Object []) = mempty
|
|
chl _ (Object vt) =
|
|
(strokeTrail . fromVertices . flip (++) [head $ grahamCH vt] . grahamCH $ vt)
|
|
# moveTo (head $ grahamCH vt) # lc red
|
|
chl _ _ = mempty
|
|
|
|
|
|
-- |Create list of diagrama which describe the lines along points of a half
|
|
-- convex hull, for each iteration of the algorithm. Which half is chosen
|
|
-- depends on the input.
|
|
convexHStepsLs :: Diag
|
|
convexHStepsLs = GifDiag chs
|
|
where
|
|
chs _ col f vt = fmap mkChDiag (f vt)
|
|
where
|
|
mkChDiag vt' = (strokeTrail . fromVertices $ vt') # moveTo (head vt') # lc col
|
|
|
|
|
|
-- |Create a diagram that shows all squares of the RangeSearch algorithm
|
|
-- from the quad tree.
|
|
squares :: Diag
|
|
squares = Diag f
|
|
where
|
|
f _ (Object []) = mempty
|
|
f p (Object vt) =
|
|
mconcat
|
|
$ (uncurry rectByDiagonal # lw ultraThin)
|
|
<$>
|
|
(quadTreeSquares (xDimension p, yDimension p)
|
|
. quadTree vt
|
|
$ (xDimension p, yDimension p))
|
|
f _ _ = mempty
|
|
|
|
|
|
-- |Draw the squares of the kd-tree.
|
|
kdSquares :: Diag
|
|
kdSquares = Diag f
|
|
where
|
|
f _ (Object []) = mempty
|
|
f p (Object vt) =
|
|
mconcat
|
|
. fmap (uncurry (~~))
|
|
$ kdLines (kdTree vt Horizontal) (xDimension p, yDimension p)
|
|
where
|
|
-- Gets all lines that make up the kdSquares. Every line is
|
|
-- described by two points, start and end respectively.
|
|
kdLines :: KDTree PT -> Square -> [(PT, PT)]
|
|
kdLines (KTNode ln pt Horizontal rn) ((xmin, xmax), (ymin, ymax)) =
|
|
(\(x, _) -> [(p2 (x, ymin), p2 (x, ymax))])
|
|
(unp2 pt)
|
|
++ kdLines ln ((xmin, x'), (ymin, ymax))
|
|
++ kdLines rn ((x', xmax), (ymin, ymax))
|
|
where
|
|
(x', _) = unp2 pt
|
|
kdLines (KTNode ln pt Vertical rn) ((xmin, xmax), (ymin, ymax)) =
|
|
(\(_, y) -> [(p2 (xmin, y), p2 (xmax, y))])
|
|
(unp2 pt)
|
|
++ kdLines ln ((xmin, xmax), (ymin, y'))
|
|
++ kdLines rn ((xmin, xmax), (y', ymax))
|
|
where
|
|
(_, y') = unp2 pt
|
|
kdLines _ _ = []
|
|
f _ _ = mempty
|
|
|
|
|
|
-- |Draw the range rectangle and highlight the points inside that range.
|
|
kdRange :: Diag
|
|
kdRange = Diag f
|
|
where
|
|
f _ (Object []) = mempty
|
|
f p (Object vt) =
|
|
(uncurry rectByDiagonal # lc red) (rangeSquare p)
|
|
<> drawP ptsInRange (dotSize p) # fc red # lc red
|
|
where
|
|
ptsInRange = fst . rangeSearch (kdTree vt Vertical) $ rangeSquare p
|
|
f _ _ = mempty
|
|
|
|
|
|
-- |The kd-tree visualized as binary tree.
|
|
kdTreeDiag :: Diag
|
|
kdTreeDiag = Diag f
|
|
where
|
|
f _ (Object []) = mempty
|
|
f p (Object vt) =
|
|
-- HACK: in order to give specific nodes a specific color
|
|
renderTree (\n -> case n of
|
|
'*':'*':_ -> (text n # fontSizeL 5.0)
|
|
<> rect 50.0 20.0 # fc green
|
|
'*':_ -> (text n # fontSizeL 5.0)
|
|
<> rect 50.0 20.0 # fc red
|
|
_ -> (text n # fontSizeL 5.0)
|
|
<> rect 50.0 20.0 # fc white)
|
|
(~~)
|
|
(symmLayout' (with & slHSep .~ 60 & slVSep .~ 40) roseTree)
|
|
# scale 2 # alignT # bg white
|
|
where
|
|
roseTree = snd
|
|
. rangeSearch (kdTree vt Vertical)
|
|
$ rangeSquare p
|
|
|
|
f _ _ = mempty
|
|
|
|
|
|
-- |Get the quad tree corresponding to the given points and diagram properties.
|
|
qt :: [PT] -> DiagProp -> QuadTree PT
|
|
qt vt p = quadTree vt (xDimension p, yDimension p)
|
|
|
|
|
|
-- |Create a diagram that shows a single square of the RangeSearch algorithm
|
|
-- from the quad tree in red, according to the given path in quadPath.
|
|
quadPathSquare :: Diag
|
|
quadPathSquare = Diag f
|
|
where
|
|
f _ (Object []) = mempty
|
|
f p (Object vt) =
|
|
(uncurry rectByDiagonal # lw thin # lc red)
|
|
(getSquare (stringToQuads (quadPath p)) (qt vt p, []))
|
|
where
|
|
getSquare :: [Either Quad Orient] -> QTZipper PT -> Square
|
|
getSquare [] z = getSquareByZipper (xDimension p, yDimension p) z
|
|
getSquare (q:qs) z = case q of
|
|
Right x -> getSquare qs (fromMaybe z (findNeighbor x z))
|
|
Left x -> getSquare qs (fromMaybe z (goQuad x z))
|
|
f _ _ = mempty
|
|
|
|
|
|
-- |Create a list of diagrams that show the walk along the given path
|
|
-- through the quad tree.
|
|
gifQuadPath :: Diag
|
|
gifQuadPath = GifDiag f
|
|
where
|
|
f p col _ vt =
|
|
(uncurry rectByDiagonal # lw thick # lc col)
|
|
<$> getSquares (stringToQuads (quadPath p)) (qt vt p, [])
|
|
where
|
|
getSquares :: [Either Quad Orient] -> QTZipper PT -> [Square]
|
|
getSquares [] z = [getSquareByZipper (xDimension p, yDimension p) z]
|
|
getSquares (q:qs) z = case q of
|
|
Right x -> getSquareByZipper (xDimension p, yDimension p) z :
|
|
getSquares qs (fromMaybe z (findNeighbor x z))
|
|
Left x -> getSquareByZipper (xDimension p, yDimension p) z :
|
|
getSquares qs (fromMaybe z (goQuad x z))
|
|
|
|
|
|
-- |A diagram that shows the full Quad Tree with nodes.
|
|
treePretty :: Diag
|
|
treePretty = Diag f
|
|
where
|
|
f _ (Object []) = mempty
|
|
f p (Object vt) =
|
|
prettyRoseTree (quadTreeToRoseTree
|
|
. flip getCurQT (qt vt p, [])
|
|
. stringToQuads
|
|
. quadPath
|
|
$ p)
|
|
where
|
|
getCurQT :: [Either Quad Orient] -> QTZipper PT -> QTZipper PT
|
|
getCurQT [] z = z
|
|
getCurQT (q:qs) z = case q of
|
|
Right x -> getCurQT qs (fromMaybe z (findNeighbor x z))
|
|
Left x -> getCurQT qs (fromMaybe z (goQuad x z))
|
|
prettyRoseTree :: Tree String -> Diagram Cairo R2
|
|
prettyRoseTree tree =
|
|
-- HACK: in order to give specific nodes a specific color
|
|
renderTree (\n -> case head n of
|
|
'*' -> (text n # fontSizeL 5.0)
|
|
<> rect 50.0 20.0 # fc red
|
|
_ -> (text n # fontSizeL 5.0)
|
|
<> rect 50.0 20.0 # fc white)
|
|
(~~)
|
|
(symmLayout' (with & slHSep .~ 60 & slVSep .~ 40) tree)
|
|
# scale 2 # alignT # bg white
|
|
f _ _ = mempty
|
|
|
|
|
|
-- |Creates a Diagram that shows an XAxis which is bound
|
|
-- by the dimensions given in xDimension from DiagProp.
|
|
xAxis :: Diag
|
|
xAxis =
|
|
Diag hRule
|
|
<> Diag segments
|
|
<> Diag labels
|
|
where
|
|
hRule p _ = arrowAt (p2 (diagXmin p, if diagYmin p <= 0 then 0 else diagYmin p))
|
|
(r2 (diagWidth p, 0))
|
|
segments p _ = hcat' (with & sep .~ squareSize p)
|
|
(replicate (floor . (/) (diagWidth p) $ squareSize p)
|
|
(vrule 10))
|
|
# moveTo (p2 (diagXmin p, if diagYmin p <= 0 then 0 else diagYmin p))
|
|
labels p _ = position . zip (mkPoint <$> xs)
|
|
$ ((\x -> (text . show $ x) # scale 10) <$> xs)
|
|
where
|
|
xs :: [Int]
|
|
xs = take (floor . (/) (diagWidth p) $ squareSize p)
|
|
(iterate (+(floor . squareSize $ p)) (floor . diagXmin $ p))
|
|
mkPoint x = p2 (fromIntegral x,
|
|
-15 + (if diagYmin p <= 0 then 0 else diagYmin p))
|
|
|
|
|
|
-- |Creates a Diagram that shows an YAxis which is bound
|
|
-- by the dimensions given in yDimension from DiagProp.
|
|
yAxis :: Diag
|
|
yAxis =
|
|
Diag vRule
|
|
<> Diag segments
|
|
<> Diag labels
|
|
where
|
|
vRule p _ = arrowAt (p2 (if diagXmin p <= 0 then 0 else diagXmin p, diagYmin p))
|
|
(r2 (0, diagHeight p))
|
|
segments p _ = vcat' (with & sep .~ squareSize p)
|
|
(replicate (floor . (/) (diagHeight p) $ squareSize p)
|
|
(hrule 10))
|
|
# alignB
|
|
# moveTo (p2 (if diagXmin p <= 0 then 0 else diagXmin p, diagYmin p))
|
|
labels p _ = position . zip (mkPoint <$> ys)
|
|
$ ((\x -> (text . show $ x) # scale 10) <$> ys)
|
|
where
|
|
ys :: [Int]
|
|
ys = take (floor . (/) (diagHeight p) $ squareSize p)
|
|
(iterate (+(floor . squareSize $ p)) (floor . diagYmin $ p))
|
|
mkPoint y = p2 (-15 + (if diagXmin p <= 0 then 0 else diagXmin p),
|
|
fromIntegral y)
|
|
|
|
|
|
-- |Creates a Diagram that shows a white rectangle which is a little
|
|
-- bit bigger than both X and Y axis dimensions from DiagProp.
|
|
whiteRectB :: Diag
|
|
whiteRectB = Diag rect'
|
|
where
|
|
rect' p _ = whiteRect (diagWidth p + (diagWidth p / 10))
|
|
(diagHeight p + (diagHeight p / 10))
|
|
# moveTo (p2 (diagWidthOffset p, diagHeightOffset p))
|
|
where
|
|
|
|
|
|
-- |Create a white rectangle with the given width and height.
|
|
whiteRect :: Double -> Double -> Diagram Cairo R2
|
|
whiteRect x y = rect x y # lwG 0.00 # bg white
|
|
|
|
|
|
-- |Create a grid across the whole diagram with squares of the
|
|
-- given size in DiagProp.
|
|
grid :: Diag
|
|
grid = Diag xGrid <> Diag yGrid
|
|
where
|
|
yGrid p _
|
|
| haveGrid p = hcat' (with & sep .~ squareSize p)
|
|
(replicate (floor . (/) (diagWidth p) $ squareSize p)
|
|
(vrule $ diagHeight p))
|
|
# moveTo (p2 (diagXmin p, diagHeightOffset p)) # lw ultraThin
|
|
| otherwise = mempty
|
|
xGrid p _
|
|
| haveGrid p = vcat' (with & sep .~ squareSize p)
|
|
(replicate (floor . (/) (diagHeight p) $ squareSize p)
|
|
(hrule $ diagWidth p))
|
|
# alignB # moveTo (p2 (diagWidthOffset p, diagYmin p)) # lw ultraThin
|
|
| otherwise = mempty
|
|
|
|
|
|
plotterBG :: Diag
|
|
plotterBG = mconcat [xAxis, yAxis, grid, whiteRectB]
|