cga/Graphics/Diagram/AlgoDiags.hs

284 lines
8.9 KiB
Haskell

{-# OPTIONS_HADDOCK ignore-exports #-}
module Graphics.Diagram.AlgoDiags where
import Algorithms.GrahamScan
import Algorithms.QuadTree
import Algorithms.KDTree
import Algorithms.PolygonIntersection
import Algorithms.PolygonTriangulation
import Data.Maybe
import Data.Monoid
import Data.Tree
import Diagrams.Backend.Cairo
import Diagrams.Prelude hiding ((<>))
import Diagrams.TwoD.Layout.Tree
import Graphics.Diagram.Core
import Parser.PathParser
import Safe
-- |Draw the lines of the polygon.
polyLines :: Diag
polyLines = Diag f
where
f _ = foldl (\x y -> x <> strokePoly y) mempty
where
strokePoly x' = fromVertices $ x' ++ (maybeToList . headMay $ x')
-- |Show the intersection points of two polygons as red dots.
polyIntersection :: Diag
polyIntersection = Diag f
where
f p [x, y] = drawP vtpi (dotSize p) # fc red # lc red
where
vtpi = intersectionPoints . sortLexPolys $ (sortLexPoly x, sortLexPoly y)
f _ _ = mempty
-- |Show the coordinate text of the intersection points of two polygons.
polyIntersectionText :: Diag
polyIntersectionText = Diag f
where
f p [x, y]
| showCoordText p = position . zip vtpi $ (pointToTextCoord # fc red <$> vtpi)
# translate (r2 (0, 10))
| otherwise = mempty
where
vtpi = intersectionPoints
. sortLexPolys
$ (sortLexPoly x,
sortLexPoly y)
f _ _ = mempty
-- |Create a diagram which shows the points of the convex hull.
convexHP :: Diag
convexHP = Diag f
where
f p vts = drawP (grahamCH (concat vts)) (dotSize p) # fc red # lc red
-- |Show coordinates as text above the convex hull points.
convexHPText :: Diag
convexHPText = Diag f
where
f p vts
| showCoordText p =
(position . zip vtch $ (pointToTextCoord <$> vtch))
# translate (r2 (0, 10))
| otherwise = mempty
where
vtch = grahamCH (concat vts)
-- |Create a diagram which shows the lines along the convex hull
-- points.
convexHLs :: Diag
convexHLs = Diag f
where
f _ vts =
(fromVertices
. flip (++) (maybeToList . headMay . grahamCH $ vt)
. grahamCH
$ vt
) # lc red
where
vt = mconcat vts
-- |Create list of diagrama which describe the lines along points of a half
-- convex hull, for each iteration of the algorithm. Which half is chosen
-- depends on the input.
convexHStepsLs :: Diag
convexHStepsLs = GifDiag f
where
f _ col g vt = fmap (\x -> fromVertices x # lc col) (g vt)
-- |Create a diagram that shows all squares of the RangeSearch algorithm
-- from the quad tree.
squares :: Diag
squares = Diag f
where
f p vts =
mconcat
$ (uncurry rectByDiagonal # lw ultraThin)
<$>
(quadTreeSquares (diagDimSquare p)
. quadTree (mconcat vts)
$ diagDimSquare p)
-- |Draw the squares of the kd-tree.
kdSquares :: Diag
kdSquares = Diag f
where
f p vts =
mconcat
. fmap (uncurry (~~))
$ kdLines (kdTree (mconcat vts) Horizontal)
(diagDimSquare p)
where
-- Gets all lines that make up the kdSquares. Every line is
-- described by two points, start and end respectively.
kdLines :: KDTree (P2 Double)
-> ((Double, Double), (Double, Double)) -- ^ square
-> [(P2 Double, P2 Double)]
kdLines (KTNode ln pt Horizontal rn) ((xmin, ymin), (xmax, ymax)) =
(\(x, _) -> [(p2 (x, ymin), p2 (x, ymax))])
(unp2 pt)
++ kdLines ln ((xmin, ymin), (x', ymax))
++ kdLines rn ((x', ymin), (xmax, ymax))
where
(x', _) = unp2 pt
kdLines (KTNode ln pt Vertical rn) ((xmin, ymin), (xmax, ymax)) =
(\(_, y) -> [(p2 (xmin, y), p2 (xmax, y))])
(unp2 pt)
++ kdLines ln ((xmin, ymin), (xmax, y'))
++ kdLines rn ((xmin, y'), (xmax, ymax))
where
(_, y') = unp2 pt
kdLines _ _ = []
-- |Draw the range rectangle and highlight the points inside that range.
kdRange :: Diag
kdRange = Diag f
where
f p vts =
(uncurry rectByDiagonal # lc red) (rangeSquare p)
<> drawP ptsInRange (dotSize p) # fc red # lc red
where
ptsInRange = fst
. rangeSearch (kdTree (mconcat vts) Vertical)
$ rangeSquare p
-- |The kd-tree visualized as binary tree.
kdTreeDiag :: Diag
kdTreeDiag = Diag f
where
f p vts =
-- HACK: in order to give specific nodes a specific color
renderTree (\n -> case n of
'*':'*':_ -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc green
'*':_ -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc red
_ -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc white)
(~~)
(symmLayout' (with & slHSep .~ 60 & slVSep .~ 40) roseTree)
# scale 2 # alignT # bg white
where
roseTree = snd
. rangeSearch (kdTree (mconcat vts) Vertical)
$ rangeSquare p
-- |Get the quad tree corresponding to the given points and diagram properties.
qt :: [P2 Double] -> DiagProp -> QuadTree (P2 Double)
qt vt p = quadTree vt (diagDimSquare p)
-- |Create a diagram that shows a single square of the RangeSearch algorithm
-- from the quad tree in red, according to the given path in quadPath.
quadPathSquare :: Diag
quadPathSquare = Diag f
where
f p vts =
(uncurry rectByDiagonal # lw thin # lc red)
(getSquare (stringToQuads (quadPath p)) (qt (mconcat vts) p, []))
where
getSquare :: [Either Quad Orient]
-> QTZipper (P2 Double)
-> ((Double, Double), (Double, Double))
getSquare [] z = getSquareByZipper (diagDimSquare p) z
getSquare (q:qs) z = case q of
Right x -> getSquare qs (fromMaybe z (findNeighbor x z))
Left x -> getSquare qs (fromMaybe z (goQuad x z))
-- |Create a list of diagrams that show the walk along the given path
-- through the quad tree.
gifQuadPath :: Diag
gifQuadPath = GifDiag f
where
f p col _ vt =
(uncurry rectByDiagonal # lw thick # lc col)
<$> getSquares (stringToQuads (quadPath p)) (qt vt p, [])
where
getSquares :: [Either Quad Orient]
-> QTZipper (P2 Double)
-> [((Double, Double), (Double, Double))]
getSquares [] z = [getSquareByZipper (diagDimSquare p) z]
getSquares (q:qs) z = case q of
Right x -> getSquareByZipper (diagDimSquare p) z :
getSquares qs (fromMaybe z (findNeighbor x z))
Left x -> getSquareByZipper (diagDimSquare p) z :
getSquares qs (fromMaybe z (goQuad x z))
-- |A diagram that shows the full Quad Tree with nodes.
treePretty :: Diag
treePretty = Diag f
where
f p vts =
prettyRoseTree (quadTreeToRoseTree
. flip getCurQT (qt (mconcat vts) p, [])
. stringToQuads
. quadPath
$ p)
where
getCurQT :: [Either Quad Orient] -> QTZipper (P2 Double) -> QTZipper (P2 Double)
getCurQT [] z = z
getCurQT (q:qs) z = case q of
Right x -> getCurQT qs (fromMaybe z (findNeighbor x z))
Left x -> getCurQT qs (fromMaybe z (goQuad x z))
prettyRoseTree :: Tree String -> Diagram Cairo
prettyRoseTree tree =
-- HACK: in order to give specific nodes a specific color
renderTree (\n -> case head n of
'*' -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc red
_ -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc white)
(~~)
(symmLayout' (with & slHSep .~ 60 & slVSep .~ 40) tree)
# scale 2 # alignT # bg white
-- |Show the points for polygon triangulation in different colors.
polyTriCategorizedPoints :: Diag
polyTriCategorizedPoints = Diag f
where
f p vts =
foldl (\diag' (x, y) ->
diag' <> (drawP [x] (dotSize p) # lc (vcatToCol y))
# fc (vcatToCol y))
mempty
(classifyList . concat $ vts)
-- category to color mapping
vcatToCol :: VCategory -> Colour Double
vcatToCol VStart = green
vcatToCol VSplit = blue
vcatToCol VEnd = red
vcatToCol VMerge = pink
vcatToCol VRegular = yellow
monotonePolys :: Diag
monotonePolys = Diag f
where
f _ vts = foldl (\x y -> x <> strokePoly y) mempty
(concat
. fmap triangulate
. monotonePartitioning
$ concat vts)
where
strokePoly x' = fromVertices $ x' ++ (maybeToList . headMay $ x')