cga/Graphics/Diagram/Plotter.hs

213 lines
6.1 KiB
Haskell

{-# OPTIONS_HADDOCK ignore-exports #-}
module Graphics.Diagram.Plotter where
import Algebra.Vector
import Algebra.VectorTypes
import Algorithms.ConvexHull.GrahamScan
import Diagrams.Backend.Cairo
import Diagrams.Prelude
import Graphics.Diagram.Types
-- |Creates a Diagram that shows the coordinates from the points
-- as dots. The points and thickness of the dots can be controlled
-- via DiagProp.
coordPoints :: Diag
coordPoints = Diag cp
where
cp p vt =
position (zip (filter (inRange (dX p) (dY p)) vt)
(repeat dot))
where
dot = (circle $ t p :: Diagram Cairo R2) # fc black
-- |Creates a Diagram from a point that shows the coordinates
-- in text format, such as "(1.0, 2.0)".
pointToTextCoord :: PT -> Diagram Cairo R2
pointToTextCoord pt =
text ("(" ++ show x ++ ", " ++ show y ++ ")") # scale 10
where
(x, y) = unp2 pt
-- |Show coordinates as text above all points.
coordPointsText :: Diag
coordPointsText = Diag cpt
where
cpt p vt =
position $
zip vtf (pointToTextCoord <$> vtf) # translate (r2 (0, 10))
where
vtf = filter (inRange (dX p) (dY p)) vt
-- |Create a diagram which shows the points of the convex hull.
convexHP :: Diag
convexHP = Diag chp
where
chp p vt =
position (zip (filter (inRange (dX p) (dY p)) vtch)
(repeat dot))
where
dot = (circle $ t p :: Diagram Cairo R2) # fc red # lc red
vtch = grahamCH vt
-- |Show coordinates as text above the convex hull points.
convexHPText :: Diag
convexHPText = Diag chpt
where
chpt p vt =
position $
zip vtchf
(pointToTextCoord <$> vtchf) # translate (r2 (0, 10))
where
vtchf = grahamCH . filter (inRange (dX p) (dY p)) $ vt
-- |Create a diagram which shows the lines along the convex hull
-- points.
convexHLs :: Diag
convexHLs = Diag chl
where
chl _ [] = mempty
chl p vt =
(strokeTrail .
fromVertices .
flip (++) [head $ grahamCH vtf] .
grahamCH $
vtf) #
moveTo (head $ grahamCH vtf) #
lc red
where
vtf = filter (inRange (dX p) (dY p)) vt
-- |Create list of diagrama which describe the lines along points of a half
-- convex hull, for each iteration of the algorithm. Which half is chosen
-- depends on the input.
convexHStepsLs :: Colour Double
-> ([PT] -> [[PT]])
-> DiagProp
-> [PT]
-> [Diagram Cairo R2]
convexHStepsLs col f p xs =
fmap mkChDiag (f xs)
where
mkChDiag vt =
(strokeTrail .
fromVertices $
vtf) #
moveTo (head vtf) #
lc col
where
vtf = filter (inRange (dX p) (dY p)) vt
-- |Create list of diagrama which describe the lines along the lower
-- convex hull points, for each iteration of the algorithm.
convexLHStepsLs :: DiagProp -> [PT] -> [Diagram Cairo R2]
convexLHStepsLs = convexHStepsLs orange grahamLHSteps
-- |Create list of diagrama which describe the lines along the upper
-- convex hull points, for each iteration of the algorithm.
convexUHStepsLs :: DiagProp -> [PT] -> [Diagram Cairo R2]
convexUHStepsLs = convexHStepsLs purple grahamUHSteps
-- |Creates a Diagram that shows an XAxis which is bound
-- by the dimensions given in xD from DiagProp.
xAxis :: Diag
xAxis =
Diag hRule `mappend`
Diag segments `mappend`
Diag labels
where
hRule p _ =
arrowAt (p2 (xmin p, if ymin p <= 0 then 0 else ymin p))
(r2 (w' p, 0))
segments p _ =
hcat' (with & sep .~ sqS p)
(replicate (floor . (/) (w' p) $ sqS p)
(vrule 10)) #
moveTo (p2 (xmin p, if ymin p <= 0 then 0 else ymin p))
labels p _ =
position $
zip (mkPoint <$> xs)
((\x -> (text . show $ x) # scale 10) <$> xs)
where
xs :: [Int]
xs = take (floor . (/) (w' p) $ sqS p)
(iterate (+(floor . sqS $ p)) (floor . xmin $ p))
mkPoint x = p2 (fromIntegral x,
-15 + (if ymin p <= 0 then 0 else ymin p))
-- |Creates a Diagram that shows an YAxis which is bound
-- by the dimensions given in yD from DiagProp.
yAxis :: Diag
yAxis =
Diag vRule `mappend`
Diag segments `mappend`
Diag labels
where
vRule p _ =
arrowAt (p2 (if xmin p <= 0 then 0 else xmin p, ymin p))
(r2 (0, h' p))
segments p _ =
vcat' (with & sep .~ sqS p)
(replicate (floor . (/) (h' p) $ sqS p)
(hrule 10)) #
alignB #
moveTo (p2 (if xmin p <= 0 then 0 else xmin p, ymin p))
labels p _ =
position $
zip (mkPoint <$> ys)
((\x -> (text . show $ x) # scale 10) <$> ys)
where
ys :: [Int]
ys = take (floor . (/) (h' p) $ sqS p)
(iterate (+(floor . sqS $ p)) (floor . ymin $ p))
mkPoint y = p2 (-15 + (if xmin p <= 0 then 0 else xmin p),
fromIntegral y)
-- |Creates a Diagram that shows a white rectangle which is a little
-- bit bigger than both X and Y axis dimensions from DiagProp.
whiteRectB :: Diag
whiteRectB = Diag rect'
where
rect' p _ =
whiteRect (w' p + (w' p / 10)) (h' p + (h' p / 10)) #
moveTo (p2 (wOff p, hOff p))
where
-- |Create a white rectangle with the given width and height.
whiteRect :: Double -> Double -> Diagram Cairo R2
whiteRect x y = rect x y # lwG 0.00 # bg white
-- |Create a grid across the whole diagram with squares of the
-- given size in DiagProp.
grid :: Diag
grid = Diag xGrid `mappend` Diag yGrid
where
yGrid p _ =
hcat' (with & sep .~ sqS p)
(replicate (floor . (/) (w' p) $ sqS p)
(vrule $ h' p)) #
moveTo (p2 (xmin p, hOff p)) #
lw ultraThin
xGrid p _ =
vcat' (with & sep .~ sqS p)
(replicate (floor . (/) (h' p) $ sqS p)
(hrule $ w' p)) #
alignB #
moveTo (p2 (wOff p, ymin p)) #
lw ultraThin
where