cga/Graphics/Diagram/Plotter.hs

363 lines
11 KiB
Haskell

{-# OPTIONS_HADDOCK ignore-exports #-}
module Graphics.Diagram.Plotter where
import Algebra.VectorTypes
import Algorithms.ConvexHull.GrahamScan
import Algorithms.QuadTree.QuadTree
import Algorithms.PolygonIntersection.Core
import Data.Maybe
import Data.Monoid
import Data.Tree
import Diagrams.Backend.Cairo
import Diagrams.Prelude hiding ((<>))
import Diagrams.TwoD.Layout.Tree
import Graphics.Diagram.Types
import Graphics.Gloss.Data.Extent
import Parser.PathParser
-- |Creates a Diagram that shows the coordinates from the points
-- as dots. The points and thickness of the dots can be controlled
-- via DiagProp.
coordPoints :: Diag
coordPoints = Diag cp
where
cp p (Object vt) = drawP vt p
cp p (Objects vts) = drawP (concat vts) p
drawP [] _ = mempty
drawP vt p =
position (zip (filterValidPT p vt)
(repeat dot))
where
dot = (circle $ t p :: Diagram Cairo R2) # fc black
-- |Creates a Diagram from a point that shows the coordinates
-- in text format, such as "(1.0, 2.0)".
pointToTextCoord :: PT -> Diagram Cairo R2
pointToTextCoord pt =
text ("(" ++ (show . trim') x ++ ", " ++ (show . trim') y ++ ")") # scale 10
where
trim' :: Double -> Double
trim' x' = (fromInteger . round $ x' * (10^2)) / (10.0^^2)
(x, y) = unp2 pt
-- |Show coordinates as text above all points.
coordPointsText :: Diag
coordPointsText = Diag cpt
where
cpt p (Object vt) = drawT vt p
cpt p (Objects vts) = drawT (concat vts) p
drawT [] _ = mempty
drawT vt p
| ct p =
position $
zip vtf (pointToTextCoord <$> vtf) # translate (r2 (0, 10))
| otherwise = mempty
where
vtf = filterValidPT p vt
-- |Draw the lines of the polygon.
polyLines :: Diag
polyLines = Diag pp
where
pp _ (Objects []) = mempty
pp p (Objects (x:y:_)) =
strokePoly x <> strokePoly y
where
strokePoly x' =
(strokeTrail .
fromVertices $
vtf x' ++ [head . vtf $ x']) #
moveTo (head x') #
lc black
vtf = filterValidPT p
pp _ _ = mempty
-- |Show the intersection points of two polygons as red dots.
polyIntersection :: Diag
polyIntersection = Diag pi'
where
pi' p (Objects (x:y:_)) = position (zip vtpi (repeat dot))
where
paF = filterValidPT p x
pbF = filterValidPT p y
dot = (circle $ t p :: Diagram Cairo R2) # fc red # lc red
vtpi = intersectionPoints
. sortLexPolys
$ (sortLexPoly paF, sortLexPoly pbF)
pi' _ _ = mempty
-- |Show the intersection points of two polygons as red dots.
polyIntersectionText :: Diag
polyIntersectionText = Diag pit'
where
pit' p (Objects (x:y:_))
| ct p =
position $
zip vtpi
(pointToTextCoord # fc red <$> vtpi) # translate (r2 (0, 10))
| otherwise = mempty
where
paF = filterValidPT p x
pbF = filterValidPT p y
vtpi = intersectionPoints
. sortLexPolys
$ (sortLexPoly paF, sortLexPoly pbF)
pit' _ _ = mempty
-- |Create a diagram which shows the points of the convex hull.
convexHP :: Diag
convexHP = Diag chp
where
chp p (Object vt) =
position (zip vtch
(repeat dot))
where
dot = (circle $ t p :: Diagram Cairo R2) # fc red # lc red
vtch = grahamCH $ filterValidPT p vt
chp _ _ = mempty
-- |Show coordinates as text above the convex hull points.
convexHPText :: Diag
convexHPText = Diag chpt
where
chpt p (Object vt)
| ct p =
position $
zip vtchf
(pointToTextCoord <$> vtchf) # translate (r2 (0, 10))
| otherwise = mempty
where
vtchf = grahamCH . filterValidPT p $ vt
chpt _ _ = mempty
-- |Create a diagram which shows the lines along the convex hull
-- points.
convexHLs :: Diag
convexHLs = Diag chl
where
chl _ (Object []) = mempty
chl p (Object vt) =
(strokeTrail .
fromVertices .
flip (++) [head $ grahamCH vtf] .
grahamCH $
vtf) #
moveTo (head $ grahamCH vtf) #
lc red
where
vtf = filterValidPT p vt
chl _ _ = mempty
-- |Create list of diagrama which describe the lines along points of a half
-- convex hull, for each iteration of the algorithm. Which half is chosen
-- depends on the input.
convexHStepsLs :: Diag
convexHStepsLs = GifDiag chs
where
chs p col f vt =
fmap mkChDiag (f . filterValidPT p $ vt)
where
mkChDiag vt' =
(strokeTrail . fromVertices $ vt') # moveTo (head vt') # lc col
-- |Create a diagram that shows all squares of the RangeSearch algorithm
-- from the quad tree.
squares :: Diag
squares = Diag f
where
f p (Object []) = mempty
f p (Object vt) =
mconcat
$ (\((xmin, xmax), (ymin, ymax)) -> rect (xmax - xmin) (ymax - ymin)
# moveTo (p2 ((xmax + xmin) / 2, (ymax + ymin) / 2)) # lw ultraThin)
<$> (quadTreeSquares (dX p, dY p) . quadTree vtf $ (dX p, dY p))
where
vtf = filterValidPT p vt
f _ _ = mempty
-- |Create a diagram that shows a single square of the RangeSearch algorithm
-- from the quad tree in red, according to the given path in pQt.
quadPathSquare :: Diag
quadPathSquare = Diag f
where
f p (Object []) = mempty
f p (Object vt) =
(\((xmin, xmax), (ymin, ymax)) -> rect (xmax - xmin) (ymax - ymin)
# moveTo (p2 ((xmax + xmin) / 2,(ymax + ymin) / 2)) # lw thin # lc red)
(getSquare (stringToQuads (pQt p)) (qt, []))
where
getSquare :: [Either Quad Orient] -> Zipper PT -> Square
getSquare [] z = getSquareByZipper (dX p, dY p) z
getSquare (q:qs) z = case q of
Right x -> getSquare qs (fromMaybe z (findNeighbor x z))
Left x -> getSquare qs (fromMaybe z (goQuad x z))
qt :: QuadTree PT
qt = quadTree vtf (dX p, dY p)
vtf :: [PT]
vtf = filterValidPT p vt
-- |Create a list of diagrams that show the walk along the given path
-- through the quad tree.
gifQuadPath :: Diag
gifQuadPath = GifDiag f
where
f p col _ vt =
(\((xmin, xmax), (ymin, ymax)) -> rect (xmax - xmin) (ymax - ymin)
# moveTo (p2 ((xmax + xmin) / 2,(ymax + ymin) / 2)) # lw thick # lc col)
<$> (getSquares (stringToQuads (pQt p)) (qt, []))
where
getSquares :: [Either Quad Orient] -> Zipper PT -> [Square]
getSquares [] z = [getSquareByZipper (dX p, dY p) z]
getSquares (q:qs) z = case q of
Right x -> getSquareByZipper (dX p, dY p) z :
getSquares qs (fromMaybe z (findNeighbor x z))
Left x -> getSquareByZipper (dX p, dY p) z :
getSquares qs (fromMaybe z (goQuad x z))
qt :: QuadTree PT
qt = quadTree vtf (dX p, dY p)
vtf :: [PT]
vtf = filterValidPT p vt
-- |A diagram that shows the full Quad Tree with nodes.
treePretty :: Diag
treePretty = Diag f
where
f p (Object []) = mempty
f p (Object vt) =
prettyRoseTree (quadTreeToRoseTree . flip getCurQT (qt, []) . stringToQuads . pQt $ p)
where
qt = quadTree (filterValidPT p vt) (dX p, dY p)
getCurQT :: [Either Quad Orient] -> Zipper PT -> Zipper PT
getCurQT [] z = z
getCurQT (q:qs) z = case q of
Right x -> getCurQT qs (fromMaybe z (findNeighbor x z))
Left x -> getCurQT qs (fromMaybe z (goQuad x z))
prettyRoseTree :: Tree String -> Diagram Cairo R2
prettyRoseTree t =
renderTree (\n -> case head n of
'*' ->
(text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc red
_ ->
(text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc white)
(~~)
(symmLayout' (with & slHSep .~ 60 & slVSep .~ 40) t)
# scale 2 # alignT # bg white
-- |Creates a Diagram that shows an XAxis which is bound
-- by the dimensions given in xD from DiagProp.
xAxis :: Diag
xAxis =
Diag hRule <>
Diag segments <>
Diag labels
where
hRule p _ =
arrowAt (p2 (xmin p, if ymin p <= 0 then 0 else ymin p))
(r2 (w' p, 0))
segments p _ =
hcat' (with & sep .~ sqS p)
(replicate (floor . (/) (w' p) $ sqS p)
(vrule 10)) #
moveTo (p2 (xmin p, if ymin p <= 0 then 0 else ymin p))
labels p _ =
position $
zip (mkPoint <$> xs)
((\x -> (text . show $ x) # scale 10) <$> xs)
where
xs :: [Int]
xs = take (floor . (/) (w' p) $ sqS p)
(iterate (+(floor . sqS $ p)) (floor . xmin $ p))
mkPoint x = p2 (fromIntegral x,
-15 + (if ymin p <= 0 then 0 else ymin p))
-- |Creates a Diagram that shows an YAxis which is bound
-- by the dimensions given in yD from DiagProp.
yAxis :: Diag
yAxis =
Diag vRule <>
Diag segments <>
Diag labels
where
vRule p _ =
arrowAt (p2 (if xmin p <= 0 then 0 else xmin p, ymin p))
(r2 (0, h' p))
segments p _ =
vcat' (with & sep .~ sqS p)
(replicate (floor . (/) (h' p) $ sqS p)
(hrule 10)) #
alignB #
moveTo (p2 (if xmin p <= 0 then 0 else xmin p, ymin p))
labels p _ =
position $
zip (mkPoint <$> ys)
((\x -> (text . show $ x) # scale 10) <$> ys)
where
ys :: [Int]
ys = take (floor . (/) (h' p) $ sqS p)
(iterate (+(floor . sqS $ p)) (floor . ymin $ p))
mkPoint y = p2 (-15 + (if xmin p <= 0 then 0 else xmin p),
fromIntegral y)
-- |Creates a Diagram that shows a white rectangle which is a little
-- bit bigger than both X and Y axis dimensions from DiagProp.
whiteRectB :: Diag
whiteRectB = Diag rect'
where
rect' p _ =
whiteRect (w' p + (w' p / 10)) (h' p + (h' p / 10)) #
moveTo (p2 (wOff p, hOff p))
where
-- |Create a white rectangle with the given width and height.
whiteRect :: Double -> Double -> Diagram Cairo R2
whiteRect x y = rect x y # lwG 0.00 # bg white
-- |Create a grid across the whole diagram with squares of the
-- given size in DiagProp.
grid :: Diag
grid = Diag xGrid <> Diag yGrid
where
yGrid p _
| gd p =
hcat' (with & sep .~ sqS p)
(replicate (floor . (/) (w' p) $ sqS p)
(vrule $ h' p)) #
moveTo (p2 (xmin p, hOff p)) #
lw ultraThin
| otherwise = mempty
xGrid p _
| gd p =
vcat' (with & sep .~ sqS p)
(replicate (floor . (/) (h' p) $ sqS p)
(hrule $ w' p)) #
alignB #
moveTo (p2 (wOff p, ymin p)) #
lw ultraThin
| otherwise = mempty
plotterBG :: Diag
plotterBG = mconcat [xAxis, yAxis, grid, whiteRectB]