cga/Graphics/Diagram/Plotter.hs

354 lines
11 KiB
Haskell

{-# OPTIONS_HADDOCK ignore-exports #-}
module Graphics.Diagram.Plotter where
import Algebra.VectorTypes
import Algorithms.ConvexHull.GrahamScan
import Algorithms.QuadTree.QuadTree
import Algorithms.PolygonIntersection.Core
import Data.Maybe
import Data.Monoid
import Data.Tree
import Diagrams.Backend.Cairo
import Diagrams.Prelude hiding ((<>))
import Diagrams.TwoD.Layout.Tree
import Graphics.Diagram.Types
import Parser.PathParser
-- |Creates a Diagram that shows the coordinates from the points
-- as dots. The points and thickness of the dots can be controlled
-- via DiagProp.
coordPoints :: Diag
coordPoints = Diag cp
where
cp p (Object vt) = drawP vt p
cp p (Objects vts) = drawP (concat vts) p
drawP [] _ = mempty
drawP vt p =
position (zip vt (repeat dot))
where
dot = (circle $ dotSize p :: Diagram Cairo R2) # fc black
-- |Creates a Diagram from a point that shows the coordinates
-- in text format, such as "(1.0, 2.0)".
pointToTextCoord :: PT -> Diagram Cairo R2
pointToTextCoord pt =
text ("(" ++ (show . trim') x ++ ", " ++ (show . trim') y ++ ")") # scale 10
where
trim' :: Double -> Double
trim' x' = fromInteger . round $ x' * (10^(2 :: Int)) /
(10.0^^(2 :: Int))
(x, y) = unp2 pt
-- |Show coordinates as text above all points.
coordPointsText :: Diag
coordPointsText = Diag cpt
where
cpt p (Object vt) = drawT vt p
cpt p (Objects vts) = drawT (concat vts) p
drawT [] _ = mempty
drawT vt p
| showCoordText p =
position
$ zip vt (pointToTextCoord <$> vt)
# translate (r2 (0, 10))
| otherwise = mempty
-- |Draw the lines of the polygon.
polyLines :: Diag
polyLines = Diag pp
where
pp _ (Objects []) = mempty
pp _ (Objects (x:y:_)) =
strokePoly x <> strokePoly y
where
strokePoly x' =
(strokeTrail
. fromVertices
$ x' ++ [head x'])
# moveTo (head x') # lc black
pp _ _ = mempty
-- |Show the intersection points of two polygons as red dots.
polyIntersection :: Diag
polyIntersection = Diag pi'
where
pi' p (Objects (x:y:_)) = position (zip vtpi (repeat dot))
where
dot = (circle $ dotSize p :: Diagram Cairo R2) # fc red # lc red
vtpi = intersectionPoints
. sortLexPolys
$ (sortLexPoly x,
sortLexPoly y)
pi' _ _ = mempty
-- |Show the coordinate text of the intersection points of two polygons.
polyIntersectionText :: Diag
polyIntersectionText = Diag pit'
where
pit' p (Objects (x:y:_))
| showCoordText p =
position
. zip vtpi
$ (pointToTextCoord # fc red <$> vtpi)
# translate (r2 (0, 10))
| otherwise = mempty
where
vtpi = intersectionPoints
. sortLexPolys
$ (sortLexPoly x,
sortLexPoly y)
pit' _ _ = mempty
-- |Create a diagram which shows the points of the convex hull.
convexHP :: Diag
convexHP = Diag chp
where
chp p (Object vt) =
position (zip vtch
(repeat dot))
where
dot = (circle $ dotSize p :: Diagram Cairo R2) # fc red # lc red
vtch = grahamCH vt
chp _ _ = mempty
-- |Show coordinates as text above the convex hull points.
convexHPText :: Diag
convexHPText = Diag chpt
where
chpt p (Object vt)
| showCoordText p =
position $
zip vtchf
(pointToTextCoord <$> vtchf) # translate (r2 (0, 10))
| otherwise = mempty
where
vtchf = grahamCH vt
chpt _ _ = mempty
-- |Create a diagram which shows the lines along the convex hull
-- points.
convexHLs :: Diag
convexHLs = Diag chl
where
chl _ (Object []) = mempty
chl _ (Object vt) =
(strokeTrail
. fromVertices
. flip (++) [head $ grahamCH vt]
. grahamCH
$ vt)
# moveTo (head $ grahamCH vt) # lc red
chl _ _ = mempty
-- |Create list of diagrama which describe the lines along points of a half
-- convex hull, for each iteration of the algorithm. Which half is chosen
-- depends on the input.
convexHStepsLs :: Diag
convexHStepsLs = GifDiag chs
where
chs p col f vt =
fmap mkChDiag (f vt)
where
mkChDiag vt' =
(strokeTrail . fromVertices $ vt') # moveTo (head vt') # lc col
-- |Create a diagram that shows all squares of the RangeSearch algorithm
-- from the quad tree.
squares :: Diag
squares = Diag f
where
f _ (Object []) = mempty
f p (Object vt) =
mconcat
$ (\((xmin, xmax), (ymin, ymax)) -> rect (xmax - xmin) (ymax - ymin)
# moveTo (p2 ((xmax + xmin) / 2, (ymax + ymin) / 2)) # lw ultraThin)
<$> (quadTreeSquares (xDimension p, yDimension p)
. quadTree vt
$ (xDimension p, yDimension p))
f _ _ = mempty
-- |Get the quad tree corresponding to the given points and diagram properties.
qt :: [PT] -> DiagProp -> QuadTree PT
qt vt p = quadTree vt (xDimension p, yDimension p)
-- |Create a diagram that shows a single square of the RangeSearch algorithm
-- from the quad tree in red, according to the given path in quadPath.
quadPathSquare :: Diag
quadPathSquare = Diag f
where
f _ (Object []) = mempty
f p (Object vt) =
(\((xmin, xmax), (ymin, ymax)) -> rect (xmax - xmin) (ymax - ymin)
# moveTo (p2 ((xmax + xmin) / 2,(ymax + ymin) / 2)) # lw thin # lc red)
(getSquare (stringToQuads (quadPath p)) (qt vt p, []))
where
getSquare :: [Either Quad Orient] -> Zipper PT -> Square
getSquare [] z = getSquareByZipper (xDimension p, yDimension p) z
getSquare (q:qs) z = case q of
Right x -> getSquare qs (fromMaybe z (findNeighbor x z))
Left x -> getSquare qs (fromMaybe z (goQuad x z))
f _ _ = mempty
-- |Create a list of diagrams that show the walk along the given path
-- through the quad tree.
gifQuadPath :: Diag
gifQuadPath = GifDiag f
where
f p col _ vt =
(\((xmin, xmax), (ymin, ymax)) -> rect (xmax - xmin) (ymax - ymin)
# moveTo (p2 ((xmax + xmin) / 2,(ymax + ymin) / 2)) # lw thick # lc col)
<$> getSquares (stringToQuads (quadPath p)) (qt vt p, [])
where
getSquares :: [Either Quad Orient] -> Zipper PT -> [Square]
getSquares [] z = [getSquareByZipper (xDimension p, yDimension p) z]
getSquares (q:qs) z = case q of
Right x -> getSquareByZipper (xDimension p, yDimension p) z :
getSquares qs (fromMaybe z (findNeighbor x z))
Left x -> getSquareByZipper (xDimension p, yDimension p) z :
getSquares qs (fromMaybe z (goQuad x z))
-- |A diagram that shows the full Quad Tree with nodes.
treePretty :: Diag
treePretty = Diag f
where
f _ (Object []) = mempty
f p (Object vt) =
prettyRoseTree (quadTreeToRoseTree
. flip getCurQT (qt vt p, [])
. stringToQuads
. quadPath
$ p)
where
getCurQT :: [Either Quad Orient] -> Zipper PT -> Zipper PT
getCurQT [] z = z
getCurQT (q:qs) z = case q of
Right x -> getCurQT qs (fromMaybe z (findNeighbor x z))
Left x -> getCurQT qs (fromMaybe z (goQuad x z))
prettyRoseTree :: Tree String -> Diagram Cairo R2
prettyRoseTree tree =
renderTree (\n -> case head n of
'*' -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc red
_ -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc white)
(~~)
(symmLayout' (with & slHSep .~ 60 & slVSep .~ 40) tree)
# scale 2 # alignT # bg white
f _ _ = mempty
-- |Creates a Diagram that shows an XAxis which is bound
-- by the dimensions given in xDimension from DiagProp.
xAxis :: Diag
xAxis =
Diag hRule <>
Diag segments <>
Diag labels
where
hRule p _ =
arrowAt (p2 (diagXmin p, if diagYmin p <= 0 then 0 else diagYmin p))
(r2 (diagWidth p, 0))
segments p _ =
hcat' (with & sep .~ squareSize p)
(replicate (floor . (/) (diagWidth p) $ squareSize p)
(vrule 10))
# moveTo (p2 (diagXmin p, if diagYmin p <= 0 then 0 else diagYmin p))
labels p _ =
position $
zip (mkPoint <$> xs)
((\x -> (text . show $ x) # scale 10) <$> xs)
where
xs :: [Int]
xs = take (floor . (/) (diagWidth p) $ squareSize p)
(iterate (+(floor . squareSize $ p)) (floor . diagXmin $ p))
mkPoint x = p2 (fromIntegral x,
-15 + (if diagYmin p <= 0 then 0 else diagYmin p))
-- |Creates a Diagram that shows an YAxis which is bound
-- by the dimensions given in yDimension from DiagProp.
yAxis :: Diag
yAxis =
Diag vRule <>
Diag segments <>
Diag labels
where
vRule p _ =
arrowAt (p2 (if diagXmin p <= 0 then 0 else diagXmin p, diagYmin p))
(r2 (0, diagHeight p))
segments p _ =
vcat' (with & sep .~ squareSize p)
(replicate (floor . (/) (diagHeight p) $ squareSize p)
(hrule 10))
# alignB
# moveTo (p2 (if diagXmin p <= 0 then 0 else diagXmin p, diagYmin p))
labels p _ =
position $
zip (mkPoint <$> ys)
((\x -> (text . show $ x) # scale 10) <$> ys)
where
ys :: [Int]
ys = take (floor . (/) (diagHeight p) $ squareSize p)
(iterate (+(floor . squareSize $ p)) (floor . diagYmin $ p))
mkPoint y = p2 (-15 + (if diagXmin p <= 0 then 0 else diagXmin p),
fromIntegral y)
-- |Creates a Diagram that shows a white rectangle which is a little
-- bit bigger than both X and Y axis dimensions from DiagProp.
whiteRectB :: Diag
whiteRectB = Diag rect'
where
rect' p _ =
whiteRect (diagWidth p + (diagWidth p / 10))
(diagHeight p + (diagHeight p / 10))
# moveTo (p2 (diagWidthOffset p, diagHeightOffset p))
where
-- |Create a white rectangle with the given width and height.
whiteRect :: Double -> Double -> Diagram Cairo R2
whiteRect x y = rect x y # lwG 0.00 # bg white
-- |Create a grid across the whole diagram with squares of the
-- given size in DiagProp.
grid :: Diag
grid = Diag xGrid <> Diag yGrid
where
yGrid p _
| haveGrid p =
hcat' (with & sep .~ squareSize p)
(replicate (floor . (/) (diagWidth p) $ squareSize p)
(vrule $ diagHeight p))
# moveTo (p2 (diagXmin p, diagHeightOffset p)) # lw ultraThin
| otherwise = mempty
xGrid p _
| haveGrid p =
vcat' (with & sep .~ squareSize p)
(replicate (floor . (/) (diagHeight p) $ squareSize p)
(hrule $ diagWidth p))
# alignB # moveTo (p2 (diagWidthOffset p, diagYmin p)) # lw ultraThin
| otherwise = mempty
plotterBG :: Diag
plotterBG = mconcat [xAxis, yAxis, grid, whiteRectB]