{-# OPTIONS_HADDOCK ignore-exports #-} {-# LANGUAGE TypeSynonymInstances, FlexibleInstances #-} module Test.Vector where import Algebra.Vector import Control.Applicative {- import Control.Monad -} import Diagrams.TwoD.Types import Test.QuickCheck instance Arbitrary R2 where arbitrary = curry r2 <$> arbitrary <*> arbitrary instance Arbitrary P2 where arbitrary = curry p2 <$> arbitrary <*> arbitrary inRangeProp1 :: Square -> Bool inRangeProp1 sq@((x1, y1), _) = inRange sq (p2 (x1, y1)) inRangeProp2 :: Square -> Bool inRangeProp2 sq@(_, (x2, y2)) = inRange sq (p2 (x2, y2)) inRangeProp3 :: Square -> Bool inRangeProp3 sq@((x1, _), (_, y2)) = inRange sq (p2 (x1, y2)) inRangeProp4 :: Square -> Bool inRangeProp4 sq@((_, y1), (x2, _)) = inRange sq (p2 (x2, y1)) inRangeProp5 :: Square -> Positive Double -> Positive Double -> Bool inRangeProp5 sq@((x1, y1), (x2, y2)) (Positive a) (Positive b) = inRange sq (p2 (x1 + ((x2 - x1) / (a + 1)), y1 + ((y2 - y1) / (b + 1)))) onPTProp1 :: PT -> Bool onPTProp1 pt = onPT id pt == pt onPTProp2 :: PT -> Positive R2 -> Bool onPTProp2 pt (Positive (R2 rx ry)) = onPT (\(x, y) -> (x + rx, y + ry)) pt /= pt getAngleProp1 :: Positive Vec -> Positive Vec -> Bool getAngleProp1 (Positive (R2 x1 _)) (Positive (R2 x2 _)) = getAngle (R2 x1 0) (R2 x2 0) == 0 getAngleProp2 :: Positive Vec -> Positive Vec -> Bool getAngleProp2 (Positive (R2 _ y1)) (Positive (R2 _ y2)) = getAngle (R2 0 y1) (R2 0 y2) == 0 getAngleProp3 :: Positive Vec -> Positive Vec -> Bool getAngleProp3 (Positive (R2 x1 _)) (Positive (R2 x2 _)) = getAngle (R2 (negate x1) 0) (R2 x2 0) == pi getAngleProp4 :: Positive Vec -> Positive Vec -> Bool getAngleProp4 (Positive (R2 _ y1)) (Positive (R2 _ y2)) = getAngle (R2 0 (negate y1)) (R2 0 y2) == pi getAngleProp5 :: Positive Vec -> Positive Vec -> Bool getAngleProp5 (Positive (R2 x1 _)) (Positive (R2 _ y2)) = getAngle (R2 x1 0) (R2 0 y2) == pi / 2 getAngleProp6 :: Positive Vec -> Positive Vec -> Bool getAngleProp6 (Positive (R2 _ y1)) (Positive (R2 x2 _)) = getAngle (R2 0 y1) (R2 x2 0) == pi / 2