{-# OPTIONS_HADDOCK ignore-exports #-} module Diagram (t, dX, dY, alg, gd, defaultProp, diag, diagS, gifDiag, gifDiagS, whiteRect) where import Algorithms.ConvexHull import Codec.Picture.Gif import Class.Defaults import Diagrams.Backend.Cairo import Diagrams.Prelude import LinearAlgebra.Vector import Parser.Meshparser type MeshString = String -- |Represents a Cairo Diagram. This allows us to create multiple -- diagrams with different algorithms but based on the same -- coordinates and common properties. data Diag = Diag { mkDiag :: DiagProp -> [PT] -> Diagram Cairo R2 } -- |Holds the properties for a Diagram, like thickness of 2d points etc. -- This can also be seen as a context when merging multiple diagrams. data DiagProp = MkProp { -- |The thickness of the dots. t :: Double, -- |The dimensions of the x-axis. dX :: Coord, -- |The dimensions of the y-axis. dY :: Coord, -- |Algorithm to use. alg :: Int, -- |If we want to show the grid. gd :: Bool, -- |Square size used to show the grid and x/y-axis. sqS :: Double } instance Def DiagProp where def = defaultProp instance Monoid Diag where mempty = Diag (\_ _ -> mempty) mappend d1 d2 = Diag g where g p vt = mkDiag d1 p vt <> mkDiag d2 p vt mconcat = foldr mappend mempty -- |The default properties of the Diagram. defaultProp :: DiagProp defaultProp = MkProp 2 (0,500) (0,500) 0 False 50 -- |Extract the lower bound of the x-axis dimension. xlD :: DiagProp -> Double xlD = fst . dX -- |Extract the upper bound of the x-axis dimension. xuD :: DiagProp -> Double xuD = snd . dX -- |Extract the lower bound of the y-axis dimension. ylD :: DiagProp -> Double ylD = fst . dY -- |Extract the upper bound of the y-axis dimension. yuD :: DiagProp -> Double yuD = snd . dY -- |Creates a Diagram that shows the coordinates from the points -- as dots. The points and thickness of the dots can be controlled -- via DiagProp. coordPoints :: Diag coordPoints = Diag f where f p vt = position (zip (filter (inRange (dX p) (dY p)) $ vt) (repeat dot)) where dot = (circle $ t p :: Diagram Cairo R2) # fc black -- |Create a diagram which shows the points of the convex hull. convexHullPoints :: Diag convexHullPoints = Diag f where f p vt = position (zip (filter (inRange (dX p) (dY p)) $ vtch) (repeat dot)) where dot = (circle $ t p :: Diagram Cairo R2) # fc red # lc red vtch = grahamGetCH vt -- |Create a diagram which shows the lines along the convex hull -- points. convexHullLines :: Diag convexHullLines = Diag f where f _ [] = mempty f p vt = (strokeTrail . fromVertices . flip (++) [head $ grahamGetCH vtf] . grahamGetCH $ vtf) # moveTo (head $ grahamGetCH vtf) # lc red where vtf = filter (inRange (dX p) (dY p)) vt -- |Same as showConvexHullLines, except that it returns an array -- of diagrams with each step of the algorithm. -- Unfortunately this is very difficult to implement as a Diag (TODO). convexHullLinesInterval :: DiagProp -> [PT] -> [Diagram Cairo R2] convexHullLinesInterval p xs = fmap g (grahamGetCHSteps xs) where g vt = (strokeTrail . fromVertices $ vtf) # moveTo (head vtf) # lc red where vtf = filter (inRange (dX p) (dY p)) vt -- |Creates a Diagram that shows an XAxis which is bound -- by the dimensions given in xD from DiagProp. xAxis :: Diag xAxis = (Diag hRule) `mappend` (Diag segments) `mappend` (Diag labels) where hRule p _ = arrowAt (p2 (xlD p,0)) (r2 (xuD p, 0)) # moveTo (p2 (xlD p,0)) segments p _ = hcat' (with & sep .~ (sqS p)) (take (floor . (/) (xuD p - xlD p) $ (sqS p)) . repeat $ (vrule 10)) # moveTo (p2 (xlD p,0)) labels p _ = position $ zip (mkPoint <$> xs) ((\x -> (flip (<>) (square 1 # lw none) . text . show $ x) # scale 10) <$> xs) where xs :: [Int] xs = take (floor . (/) (xuD p - xlD p) $ (sqS p)) (iterate (+(floor . sqS $ p)) 0) mkPoint x = p2 (fromIntegral x, -15) -- |Creates a Diagram that shows an YAxis which is bound -- by the dimensions given in yD from DiagProp. yAxis :: Diag yAxis = (Diag vRule) `mappend` (Diag segments) `mappend` (Diag labels) where vRule p _ = arrowAt (p2 (0, ylD p)) (r2 (0, yuD p)) # moveTo (p2 (0, ylD p)) segments p _ = vcat' (with & sep .~ (sqS p)) (take (floor . (/) (yuD p - ylD p) $ (sqS p)) . repeat $ (hrule 10)) # alignB # moveTo (p2 (0, (ylD p))) labels p _ = position $ zip (mkPoint <$> ys) ((\x -> (flip (<>) (square 1 # lw none) . text . show $ x) # scale 10) <$> ys) where ys :: [Int] ys = take (floor . (/) (yuD p - ylD p) $ (sqS p)) (iterate (+(floor . sqS $ p)) 0) mkPoint y = p2 (-15, fromIntegral y) -- |Creates a Diagram that shows a white rectangle which is a little -- bit bigger as both X and Y axis dimensions from DiagProp. whiteRectB :: Diag whiteRectB = Diag f where f p _ = whiteRect (w' + 50) (h' + 50) # moveTo (p2 (w' / 2, h' / 2)) where w' = xuD p - xlD p h' = yuD p - ylD p -- |Create the Diagram from the points. diag :: DiagProp -> [PT] -> Diagram Cairo R2 diag p = case alg p of 0 -> mkDiag (mconcat [coordPoints, xAxis, yAxis, (if gd p then grid else mempty), whiteRectB]) p 1 -> mkDiag (mconcat [convexHullPoints, convexHullLines, coordPoints, xAxis, yAxis, (if gd p then grid else mempty), whiteRectB]) p _ -> mempty -- |Create the Diagram from a String which is supposed to be the contents -- of an obj file. diagS :: DiagProp -> MeshString -> Diagram Cairo R2 diagS p mesh = (diag p . meshToArr $ mesh) # bg white -- |Return a list of tuples used by 'gifMain' to generate an animated gif. gifDiag :: DiagProp -> [PT] -> [(Diagram Cairo R2, GifDelay)] gifDiag p xs = fmap (\x -> (x, 100)) . fmap (\x -> x <> g) . flip (++) [mkDiag (convexHullLines `mappend` convexHullPoints) p xs] $ (convexHullLinesInterval p xs) where g = mconcat . fmap (\x -> mkDiag x p xs) $ [coordPoints, xAxis, yAxis, whiteRectB] -- |Same as gifDiag, except that it takes a string containing the -- mesh file content instead of the the points. gifDiagS :: DiagProp -> MeshString -> [(Diagram Cairo R2, GifDelay)] gifDiagS p = gifDiag p . meshToArr -- |Create a white rectangle with the given width and height. whiteRect :: Double -> Double -> Diagram Cairo R2 whiteRect x y = rect x y # lwG 0.00 # bg white -- |Create a grid across the whole diagram with 50*50 squares. grid :: Diag grid = Diag f `mappend` Diag g where f p _ = hcat' (with & sep .~ (sqS p)) (take (floor . (/) (xuD p - xlD p) $ (sqS p)) . repeat $ (vrule $ xuD p - xlD p)) # moveTo (p2 (xlD p, (yuD p - ylD p) / 2)) # lw ultraThin g p _ = vcat' (with & sep .~ (sqS p)) (take (floor . (/) (yuD p - ylD p) $ (sqS p)) . repeat $ (hrule $ yuD p - ylD p)) # alignB # moveTo (p2 ((xuD p - xlD p) / 2, ylD p)) # lw ultraThin