{-# OPTIONS_HADDOCK ignore-exports #-} module Diagram (t, dX, dY, alg, gd, ct, defaultProp, diag, diagS, gifDiag, gifDiagS, whiteRect) where import Algorithms.ConvexHull import Codec.Picture.Gif import Class.Defaults import Diagrams.Backend.Cairo import Diagrams.Prelude import LinearAlgebra.Vector import Parser.Meshparser type MeshString = String -- |Represents a Cairo Diagram. This allows us to create multiple -- diagrams with different algorithms but based on the same -- coordinates and common properties. data Diag = Diag { mkDiag :: DiagProp -> [PT] -> Diagram Cairo R2 } -- |Holds the properties for a Diagram, like thickness of 2d points etc. -- This can also be seen as a context when merging multiple diagrams. data DiagProp = MkProp { -- |The thickness of the dots. t :: Double, -- |The dimensions of the x-axis. dX :: Coord, -- |The dimensions of the y-axis. dY :: Coord, -- |Algorithm to use. alg :: Int, -- |If we want to show the grid. gd :: Bool, -- |If we want to show the coordinates as text. ct :: Bool, -- |Square size used to show the grid and x/y-axis. sqS :: Double } instance Def DiagProp where def = defaultProp instance Monoid Diag where mempty = Diag (\_ _ -> mempty) mappend d1 d2 = Diag g where g p vt = mkDiag d1 p vt <> mkDiag d2 p vt mconcat = foldr mappend mempty -- |The default properties of the Diagram. defaultProp :: DiagProp defaultProp = MkProp 2 (0,500) (0,500) 0 False False 50 -- |Extract the lower bound of the x-axis dimension. xlD :: DiagProp -> Double xlD = fst . dX -- |Extract the upper bound of the x-axis dimension. xuD :: DiagProp -> Double xuD = snd . dX -- |Extract the lower bound of the y-axis dimension. ylD :: DiagProp -> Double ylD = fst . dY -- |Extract the upper bound of the y-axis dimension. yuD :: DiagProp -> Double yuD = snd . dY -- |Returns the specified diagram if True is passed, -- otherwise returns the empty diagram. This is just for convenience -- to avoid if else constructs. maybeDiag :: Bool -> Diag -> Diag maybeDiag b d | b = d | otherwise = mempty -- |Creates a Diagram that shows the coordinates from the points -- as dots. The points and thickness of the dots can be controlled -- via DiagProp. coordPoints :: Diag coordPoints = Diag cp where cp p vt = position (zip (filter (inRange (dX p) (dY p)) $ vt) (repeat dot)) where dot = (circle $ t p :: Diagram Cairo R2) # fc black -- |Creates a Diagram from a point that shows the coordinates -- in text format, such as "(1.0, 2.0)". pointToTextCoord :: PT -> Diagram Cairo R2 pointToTextCoord pt = text ("(" ++ show x ++ ", " ++ show y ++ ")") # scale 10 where (x, y) = unp2 pt -- |Show coordinates as text above all points. coordPointsText :: Diag coordPointsText = Diag cpt where cpt _ vt = position $ zip vt (pointToTextCoord <$> vt) # translate (r2 (0, 10)) -- |Create a diagram which shows the points of the convex hull. convexHullPoints :: Diag convexHullPoints = Diag chp where chp p vt = position (zip (filter (inRange (dX p) (dY p)) $ vtch) (repeat dot)) where dot = (circle $ t p :: Diagram Cairo R2) # fc red # lc red vtch = grahamGetCH vt -- |Show coordinates as text above the convex hull points. convexHullPointsText :: Diag convexHullPointsText = Diag chpt where chpt _ vt = position $ zip vtch (pointToTextCoord <$> vtch) # translate (r2 (0, 10)) where vtch = grahamGetCH vt -- |Create a diagram which shows the lines along the convex hull -- points. convexHullLines :: Diag convexHullLines = Diag chl where chl _ [] = mempty chl p vt = (strokeTrail . fromVertices . flip (++) [head $ grahamGetCH vtf] . grahamGetCH $ vtf) # moveTo (head $ grahamGetCH vtf) # lc red where vtf = filter (inRange (dX p) (dY p)) vt -- |Same as showConvexHullLines, except that it returns an array -- of diagrams with each step of the algorithm. -- Unfortunately this is very difficult to implement as a Diag (TODO). convexHullLinesInterval :: DiagProp -> [PT] -> [Diagram Cairo R2] convexHullLinesInterval p xs = fmap mkChDiag (grahamGetCHSteps xs) where mkChDiag vt = (strokeTrail . fromVertices $ vtf) # moveTo (head vtf) # lc red where vtf = filter (inRange (dX p) (dY p)) vt -- |Creates a Diagram that shows an XAxis which is bound -- by the dimensions given in xD from DiagProp. xAxis :: Diag xAxis = (Diag hRule) `mappend` (Diag segments) `mappend` (Diag labels) where hRule p _ = arrowAt (p2 (xlD p,0)) (r2 (xuD p, 0)) # moveTo (p2 (xlD p,0)) segments p _ = hcat' (with & sep .~ (sqS p)) (take (floor . (/) (xuD p - xlD p) $ (sqS p)) . repeat $ (vrule 10)) # moveTo (p2 (xlD p,0)) labels p _ = position $ zip (mkPoint <$> xs) ((\x -> (flip (<>) (square 1 # lw none) . text . show $ x) # scale 10) <$> xs) where xs :: [Int] xs = take (floor . (/) (xuD p - xlD p) $ (sqS p)) (iterate (+(floor . sqS $ p)) 0) mkPoint x = p2 (fromIntegral x, -15) -- |Creates a Diagram that shows an YAxis which is bound -- by the dimensions given in yD from DiagProp. yAxis :: Diag yAxis = (Diag vRule) `mappend` (Diag segments) `mappend` (Diag labels) where vRule p _ = arrowAt (p2 (0, ylD p)) (r2 (0, yuD p)) # moveTo (p2 (0, ylD p)) segments p _ = vcat' (with & sep .~ (sqS p)) (take (floor . (/) (yuD p - ylD p) $ (sqS p)) . repeat $ (hrule 10)) # alignB # moveTo (p2 (0, (ylD p))) labels p _ = position $ zip (mkPoint <$> ys) ((\x -> (flip (<>) (square 1 # lw none) . text . show $ x) # scale 10) <$> ys) where ys :: [Int] ys = take (floor . (/) (yuD p - ylD p) $ (sqS p)) (iterate (+(floor . sqS $ p)) 0) mkPoint y = p2 (-15, fromIntegral y) -- |Creates a Diagram that shows a white rectangle which is a little -- bit bigger as both X and Y axis dimensions from DiagProp. whiteRectB :: Diag whiteRectB = Diag rect' where rect' p _ = whiteRect (w' + 50) (h' + 50) # moveTo (p2 (w' / 2, h' / 2)) where w' = xuD p - xlD p h' = yuD p - ylD p -- |Create the Diagram from the points. diag :: DiagProp -> [PT] -> Diagram Cairo R2 diag p = case alg p of 0 -> mkDiag (mconcat [maybeDiag (ct p) coordPointsText, coordPoints, xAxis, yAxis, maybeDiag (gd p) grid, whiteRectB]) p 1 -> mkDiag (mconcat [maybeDiag (ct p) convexHullPointsText, convexHullPoints, convexHullLines, coordPoints, xAxis, yAxis, maybeDiag (gd p) grid, whiteRectB]) p _ -> mempty -- |Create the Diagram from a String which is supposed to be the contents -- of an obj file. diagS :: DiagProp -> MeshString -> Diagram Cairo R2 diagS p mesh = (diag p . meshToArr $ mesh) # bg white -- |Return a list of tuples used by 'gifMain' to generate an animated gif. gifDiag :: DiagProp -> [PT] -> [(Diagram Cairo R2, GifDelay)] gifDiag p xs = fmap (\x -> (x, 100)) . fmap (\x -> x <> nonChDiag) . flip (++) [mkDiag (convexHullLines `mappend` convexHullPoints) p xs] $ (convexHullLinesInterval p xs) where -- add the x-axis and the other default stuff nonChDiag = mconcat . fmap (\x -> mkDiag x p xs) $ [coordPoints, xAxis, yAxis, whiteRectB] -- |Same as gifDiag, except that it takes a string containing the -- mesh file content instead of the the points. gifDiagS :: DiagProp -> MeshString -> [(Diagram Cairo R2, GifDelay)] gifDiagS p = gifDiag p . meshToArr -- |Create a white rectangle with the given width and height. whiteRect :: Double -> Double -> Diagram Cairo R2 whiteRect x y = rect x y # lwG 0.00 # bg white -- |Create a grid across the whole diagram with squares of the -- given size in DiagProp. grid :: Diag grid = Diag xGrid `mappend` Diag yGrid where yGrid p _ = hcat' (with & sep .~ (sqS p)) (take (floor . (/) (xuD p - xlD p) $ (sqS p)) . repeat $ (vrule $ xuD p - xlD p)) # moveTo (p2 (xlD p, (yuD p - ylD p) / 2)) # lw ultraThin xGrid p _ = vcat' (with & sep .~ (sqS p)) (take (floor . (/) (yuD p - ylD p) $ (sqS p)) . repeat $ (hrule $ yuD p - ylD p)) # alignB # moveTo (p2 ((xuD p - xlD p) / 2, ylD p)) # lw ultraThin