{-# OPTIONS_HADDOCK ignore-exports #-} module Algorithms.KDTree.KDTree (kdTree , kdFoldl , kdFoldr , kdTreeToRoseTree , rangeSearch , getValS , isLeaf , getVal , getDirection , goLeft , goRight , Direction(Vertical, Horizontal) , KDTree(KTNil, KTNode)) where import Algebra.VectorTypes import Algebra.Vector import Data.Maybe (fromJust, catMaybes) import Data.Tree import Diagrams.TwoD.Types import MyPrelude (pivot,if',Not, not') import Safe -- |The KDTree data structure. data KDTree a -- |An empty node. = KTNil -- |A node with a value and a left and right child | KTNode (KDTree a) a Direction (KDTree a) deriving (Show, Eq) data Direction = Vertical | Horizontal deriving (Show, Eq, Enum) instance Not Direction where not' Vertical = Horizontal not' Horizontal = Vertical -- |Construct a kd-tree from a list of points in O(n log n). kdTree :: [PT] -- ^ list of points to construct the kd-tree from -> Direction -- ^ initial direction of the root-node -> KDTree PT -- ^ resulting kd-tree kdTree xs' = go (sortedX xs') (sortedY xs') where go [] _ _ = KTNil go _ [] _ = KTNil go xs ys dir = KTNode (go x1 y1 (not' dir)) (fromJust . pivot $ if' (dir == Vertical) ys xs) dir (go x2 y2 (not' dir)) where ((x1, x2), (y1, y2)) = if' (dir == Vertical) (partitionY (xs, ys)) (partitionX (xs, ys)) -- |Partitions two sorted list of points X and Y against a pivot. -- If you want to partition against the pivot of Y, then you pass -- partition' (pivot ys) (xs, ys) -- and get ((x1, x2), (y1, y2)). -- If you want to partition against the pivot of X, then you pass -- partition' (pivot xs) (ys, xs) -- and get ((y1, y2), (x1, x2)). partition' :: PT -- ^ the pivot to partition against -> ([PT], [PT]) -- ^ both lists (X, Y) or (Y, X) -> (([PT], [PT]), ([PT], [PT])) -- ^ ((x1, x2), (y1, y2)) or -- ((y1, y2), (x1, x2)) partition' piv (xs, ys) = ((x1, x2), (y1, y2)) where y1 = takeWhile (/= piv) ys y2 = tailDef [] . dropWhile (/= piv) $ ys x1 = foldr (\x y -> [x | x `elem` y1] ++ y) [] xs x2 = foldr (\x y -> [x | x `elem` y2] ++ y) [] xs -- |Partition two sorted lists of points X and Y against the pivot of -- Y. This function is unsafe as it does not check if there is a valid -- pivot. partitionY :: ([PT], [PT]) -- ^ both lists (X, Y) -> (([PT], [PT]), ([PT], [PT])) -- ^ ((x1, x2), (y1, y2)) partitionY (xs, ys) = partition' (fromJust . pivot $ ys) (xs, ys) -- |Partition two sorted lists of points X and Y against the pivot of -- X. This function is unsafe as it does not check if there is a valid -- pivot. partitionX :: ([PT], [PT]) -- ^ both lists (X, Y) -> (([PT], [PT]), ([PT], [PT])) -- ^ ((x1, x2), (y1, y2)) partitionX (xs, ys) = (\(x, y) -> (y, x)) . partition' (fromJust . pivot $ xs) $ (ys, xs) -- |Execute a range search in O(log n). It returns a tuple -- of the points found in the range and also gives back a pretty -- rose tree suitable for printing. rangeSearch :: KDTree PT -> Square -> ([PT], Tree String) rangeSearch kd' sq' = (goPt kd' sq', goTree kd' sq' True) where -- either y1 or x1 depending on the orientation p1' dir ((x1, _), (y1, _)) = if' (dir == Vertical) y1 x1 -- either y2 or x2 depending on the orientation p2' dir ((_, x2), (_, y2)) = if' (dir == Vertical) y2 x2 -- either the second or first of the tuple, depending on the orientation cur' dir = if' (dir == Vertical) snd fst -- All points in the range. goPt :: KDTree PT -> Square -> [PT] goPt KTNil _ = [] goPt (KTNode ln pt dir rn) sq = [pt | inRange sq pt] ++ (if' (p1' dir sq < (cur' dir . unp2 $ pt)) (goPt ln sq) [] ) ++ (if' ((cur' dir . unp2 $ pt) < p2' dir sq) (goPt rn sq) []) where -- A pretty rose tree suitable for printing. goTree :: KDTree PT -> Square -> Bool -> Tree String goTree KTNil _ _ = Node "nil" [] goTree (KTNode ln pt dir rn) sq vis | ln == KTNil && rn == KTNil = Node treeText [] | otherwise = Node treeText [if' (p1' dir sq < (cur' dir . unp2 $ pt)) (goTree ln sq vis) (goTree ln sq False) , if' ((cur' dir . unp2 $ pt) < p2' dir sq) (goTree rn sq vis) (goTree rn sq False)] where treeText | vis && inRange sq pt = "** " ++ (show . unp2 $ pt) | vis = "* " ++ (show . unp2 $ pt) | otherwise = show . unp2 $ pt -- |Left fold over ALL tree nodes. kdFoldl :: (a -> KDTree b -> a) -> a -> KDTree b -> a kdFoldl f sv kd@(KTNode ln _ _ rn) = foldl (kdFoldl f) (f sv kd) [ln, rn] kdFoldl f sv kd = f sv kd -- |Right fold over ALL tree nodes. kdFoldr :: (KDTree b -> a -> a) -> a -> KDTree b -> a kdFoldr f sv kd = kdFoldl (\g b x -> g (f b x)) id kd sv -- |Get all values of a tree. getValS :: KDTree a -> [a] getValS = catMaybes . kdFoldl (\x y -> x ++ [getVal y]) [] -- |Whether the tree is a leaf. isLeaf :: KDTree a -> Bool isLeaf (KTNode KTNil _ _ KTNil) = True isLeaf _ = False -- |Get the value of the root node of the tree. Returns Nothing if it's a -- leaf. getVal :: KDTree a -> Maybe a getVal (KTNode _ val _ _) = Just val getVal _ = Nothing -- |Get the direction of the current node/level. getDirection :: KDTree a -> Maybe Direction getDirection (KTNode _ _ dir _) = Just dir getDirection _ = Nothing -- |Convert a kd-tree to a rose tree, for pretty printing. kdTreeToRoseTree :: KDTree PT -> Tree String kdTreeToRoseTree (KTNil) = Node "nil" [] kdTreeToRoseTree (KTNode ln val _ rn) = Node (show . unp2 $ val) [kdTreeToRoseTree ln, kdTreeToRoseTree rn] goLeft :: KDTree a -> Maybe (KDTree a) goLeft (KTNode ln _ _ _) = Just ln goLeft _ = Nothing goRight :: KDTree a -> Maybe (KDTree a) goRight (KTNode _ _ _ rn) = Just rn goRight _ = Nothing