module Algorithms.RangeSearch.Core (quadTree, quadTreeSquares, qtFoldl, qtFoldr, goQuad, findNeighbor, lookupByPath', getSquareByZipper, rootNode, testArr, Orient(North,East,West,South), Quad(NW,NE,SW,SE), QuadTree, Zipper) where import Algebra.VectorTypes import Algebra.Vector import Data.Foldable (foldlM) import Data.Maybe (fromJust) import Diagrams.TwoD.Types -- |The quad tree structure. data QuadTree a -- |An empty node. = TNil -- |A leaf containing some value. | TLeaf a -- |A node with four children. | TNode (QuadTree a) (QuadTree a) -- NW NE (QuadTree a) (QuadTree a) -- SW SE deriving (Show, Eq) -- |Represents a Quadrant in the 2D plane. data Quad = NW | NE | SW | SE deriving (Show) -- |A Crumb used for the QuadTree Zipper. data Crumb a = NWCrumb (QuadTree a) (QuadTree a) (QuadTree a) | NECrumb (QuadTree a) (QuadTree a) (QuadTree a) | SWCrumb (QuadTree a) (QuadTree a) (QuadTree a) | SECrumb (QuadTree a) (QuadTree a) (QuadTree a) deriving (Show, Eq) -- |A list of Crumbs. type Breadbrumbs a = [Crumb a] -- |Zipper for the QuadTree. type Zipper a = (QuadTree a, Breadbrumbs a) -- |Orientation. data Orient = North | South | East | West deriving (Show) -- |Get a sub-square of the current square, e.g. nw, ne, sw or se. nwSq, neSq, swSq, seSq :: Square -> Square nwSq ((xl, xu), (yl, yu)) = (,) (xl, (xl + xu) / 2) ((yl + yu) / 2, yu) neSq ((xl, xu), (yl, yu)) = (,) ((xl + xu) / 2, xu) ((yl + yu) / 2, yu) swSq ((xl, xu), (yl, yu)) = (,) (xl, (xl + xu) / 2) (yl, (yl + yu) / 2) seSq ((xl, xu), (yl, yu)) = (,) ((xl + xu) / 2, xu) (yl, (yl + yu) / 2) -- |Check whether the current Node is an nw, ne, sw or se child of it's -- parent. isNWchild, isNEchild, isSWchild, isSEchild :: Zipper a -> Bool isNWchild (_, NWCrumb {}:_) = True isNWchild _ = False isNEchild (_, NECrumb {}:_) = True isNEchild _ = False isSWchild (_, SWCrumb {}:_) = True isSWchild _ = False isSEchild (_, SECrumb {}:_) = True isSEchild _ = False -- |Builds a quadtree of a list of points which recursively divides up 2D -- space into quadrants, so that every leaf-quadrant stores either zero or one -- point. quadTree :: [PT] -- ^ the points to divide -> Square -- ^ the initial square around the points -> QuadTree PT -- ^ the quad tree quadTree pts' sq' = go (flip filter pts' . inRange $ sq') sq' where go [] _ = TNil go [pt] _ = TLeaf pt go pts sq = TNode (quadTree pts . nwSq $ sq) (quadTree pts . neSq $ sq) (quadTree pts . swSq $ sq) (quadTree pts . seSq $ sq) -- |Get all squares of a quad tree. quadTreeSquares :: Square -- ^ the initial square around the points -> QuadTree PT -- ^ the quad tree -> [Square] -- ^ all squares of the quad tree quadTreeSquares sq (TNil) = [sq] quadTreeSquares sq (TLeaf _) = [sq] quadTreeSquares sq (TNode nw ne sw se) = quadTreeSquares (nwSq sq) nw ++ quadTreeSquares (neSq sq) ne ++ quadTreeSquares (swSq sq) sw ++ quadTreeSquares (seSq sq) se -- |Get the current square of the zipper, relative to the to the given top -- square. getSquareByZipper :: Square -> Zipper a -> Square getSquareByZipper sq z = go sq (reverse . snd $ z) where go sq' [] = sq' go sq' (NWCrumb {}:zs) = go (nwSq sq') zs go sq' (NECrumb {}:zs) = go (neSq sq') zs go sq' (SWCrumb {}:zs) = go (swSq sq') zs go sq' (SECrumb {}:zs) = go (seSq sq') zs -- |Left fold over the tree leafs. qtFoldl :: (a -> b -> a) -> a -> QuadTree b -> a qtFoldl _ sv (TNil) = sv qtFoldl f sv (TLeaf a) = f sv a qtFoldl f sv (TNode nw ne sw se) = foldl (qtFoldl f) sv [nw, ne, sw, se] -- |Right fold over the tree leafs. qtFoldr :: (b -> a -> a) -> a -> QuadTree b -> a qtFoldr f sv qt = qtFoldl (\g b x -> g (f b x)) id qt sv -- |Go to nw, ne, sw or se from the current node, one level deeper. goNW, goNE, goSW, goSE :: Zipper a -> Maybe (Zipper a) goNW (TNode nw ne sw se, bs) = Just (nw, NWCrumb ne sw se:bs) goNW _ = Nothing goNE (TNode nw ne sw se, bs) = Just (ne, NECrumb nw sw se:bs) goNE _ = Nothing goSW (TNode nw ne sw se, bs) = Just (sw, SWCrumb nw ne se:bs) goSW _ = Nothing goSE (TNode nw ne sw se, bs) = Just (se, SECrumb nw ne sw:bs) goSE _ = Nothing -- |Go to the given Quad from the current Node, one level deeper. goQuad :: Quad -> Zipper a -> Maybe (Zipper a) goQuad q = case q of NW -> goNW NE -> goNE SW -> goSW SE -> goSE -- |Go up to the parent node, if any. goUp :: Zipper a -> Maybe (Zipper a) goUp (qt, NWCrumb ne sw se:bs) = Just (TNode qt ne sw se, bs) goUp (qt, NECrumb nw sw se:bs) = Just (TNode nw qt sw se, bs) goUp (qt, SWCrumb nw ne se:bs) = Just (TNode nw ne qt se, bs) goUp (qt, SECrumb nw ne sw:bs) = Just (TNode nw ne sw qt, bs) goUp _ = Nothing -- |Get the root node. rootNode :: Zipper a -> Zipper a rootNode (qt, []) = (qt, []) rootNode z = rootNode . fromJust . goUp $ z -- |Look up a node by a given path of Quads. lookupByPath' :: [Quad] -> QuadTree a -> Maybe (Zipper a) lookupByPath' qs qt = foldlM (flip goQuad) (qt, []) qs -- |Find the north, south, east or west neighbor of a given node. findNeighbor :: Orient -> Zipper a -> Maybe (Zipper a) findNeighbor ot zr = case ot of North -> go isSWchild isSEchild isNWchild goNW goNE goSW goSE zr South -> go isNWchild isNEchild isSWchild goSW goSE goNW goNE zr East -> go isNWchild isSWchild isNEchild goNE goSE goNW goSW zr West -> go isNEchild isSEchild isNWchild goNW goSW goNE goSE zr where go _ _ _ _ _ _ _ (_, []) = Nothing go is1 is2 is3 go1 go2 go3 go4 z@(_, _:_) | is1 z = goUp z >>= go1 | is2 z = goUp z >>= go2 | otherwise = checkParent . go is1 is2 is3 go1 go2 go3 go4 . fromJust . goUp $ z where checkParent (Just (z'@(TNode {}, _))) | is3 z = go3 z' | otherwise = go4 z' checkParent (Just z') = Just z' checkParent _ = Nothing testArr :: [PT] testArr = [p2 (200.0, 450.0), p2 (400.0, 350.0), p2 (100.0, 300.0), p2 (25.0 , 350.0), p2 (225.0, 225.0), p2 (400.0, 150.0), p2 (300.0, 100.0), p2 (300.0, 300.0), p2 (300.0, 350.0), p2 (50.0 , 450.0), p2 (100.0, 25.0)]