{-# OPTIONS_HADDOCK ignore-exports #-} {-# LANGUAGE TypeSynonymInstances, FlexibleInstances #-} module Test.Vector where import Algebra.Vector import Control.Applicative import Control.Arrow {- import Control.Monad -} import Diagrams.TwoD.Types import Test.QuickCheck newtype RoundDouble = RoundDouble { getRD :: Double } deriving (Eq, Ord, Show, Read) newtype PosRoundDouble = PosRoundDouble { getPRD :: Double } deriving (Eq, Ord, Show, Read) newtype RoundR2 = RoundR2 { getRR2 :: R2 } deriving (Eq, Ord, Show, Read) newtype PosRoundR2 = PosRoundR2 { getPRR2 :: R2 } deriving (Eq, Ord, Show, Read) instance Arbitrary RoundDouble where arbitrary = RoundDouble <$> fromIntegral <$> (arbitrary :: Gen Int) instance Arbitrary PosRoundDouble where arbitrary = PosRoundDouble <$> fromIntegral -- (maxBound :: Int) instead of 100000 generates doubles <$> (choose (1, 10000) :: Gen Int) instance Arbitrary RoundR2 where arbitrary = curry (RoundR2 . r2 . (getRD *** getRD)) <$> (arbitrary :: Gen RoundDouble) <*> (arbitrary :: Gen RoundDouble) instance Arbitrary PosRoundR2 where arbitrary = curry (PosRoundR2 . r2 . (getPRD *** getPRD)) <$> (arbitrary :: Gen PosRoundDouble) <*> (arbitrary :: Gen PosRoundDouble) instance Arbitrary R2 where arbitrary = curry r2 <$> arbitrary <*> arbitrary instance Arbitrary P2 where arbitrary = curry p2 <$> arbitrary <*> arbitrary -- the point describing the lower left corner of the square -- must be part of the square inRangeProp1 :: Square -> Bool inRangeProp1 sq@((x1, y1), _) = inRange sq (p2 (x1, y1)) -- the point describing the upper right corner of the square -- must be part of the square inRangeProp2 :: Square -> Bool inRangeProp2 sq@(_, (x2, y2)) = inRange sq (p2 (x2, y2)) -- the point describing the upper left corner of the square -- must be part of the square inRangeProp3 :: Square -> Bool inRangeProp3 sq@((x1, _), (_, y2)) = inRange sq (p2 (x1, y2)) -- the point describing the lower right corner of the square -- must be part of the square inRangeProp4 :: Square -> Bool inRangeProp4 sq@((_, y1), (x2, _)) = inRange sq (p2 (x2, y1)) -- generating random points within the square inRangeProp5 :: Square -> Positive Double -> Positive Double -> Bool inRangeProp5 sq@((x1, y1), (x2, y2)) (Positive a) (Positive b) = inRange sq (p2 (x1 + ((x2 - x1) / (a + 1)), y1 + ((y2 - y1) / (b + 1)))) -- apply id function on the point onPTProp1 :: PT -> Bool onPTProp1 pt = onPT id pt == pt -- add a random value to the point coordinates onPTProp2 :: PT -> Positive R2 -> Bool onPTProp2 pt (Positive (R2 rx ry)) = onPT (\(x, y) -> (x + rx, y + ry)) pt /= pt -- angle between two vectors both on the x-axis must be 0 getAngleProp1 :: Positive Vec -> Positive Vec -> Bool getAngleProp1 (Positive (R2 x1 _)) (Positive (R2 x2 _)) = getAngle (R2 x1 0) (R2 x2 0) == 0 -- angle between two vectors both on the y-axis must be 0 getAngleProp2 :: Positive Vec -> Positive Vec -> Bool getAngleProp2 (Positive (R2 _ y1)) (Positive (R2 _ y2)) = getAngle (R2 0 y1) (R2 0 y2) == 0 -- angle between two vectors both on the x-axis but with opposite direction -- must be pi getAngleProp3 :: Positive Vec -> Positive Vec -> Bool getAngleProp3 (Positive (R2 x1 _)) (Positive (R2 x2 _)) = getAngle (R2 (negate x1) 0) (R2 x2 0) == pi -- angle between two vectors both on the y-axis but with opposite direction -- must be pi getAngleProp4 :: Positive Vec -> Positive Vec -> Bool getAngleProp4 (Positive (R2 _ y1)) (Positive (R2 _ y2)) = getAngle (R2 0 (negate y1)) (R2 0 y2) == pi -- angle between vector in x-axis direction and y-axis direction must be -- p/2 getAngleProp5 :: Positive Vec -> Positive Vec -> Bool getAngleProp5 (Positive (R2 x1 _)) (Positive (R2 _ y2)) = getAngle (R2 x1 0) (R2 0 y2) == pi / 2 -- commutative getAngleProp6 :: Positive Vec -> Positive Vec -> Bool getAngleProp6 (Positive v1) (Positive v2) = getAngle v1 v2 == getAngle v2 v1 -- commutative scalarProdProp1 :: Vec -> Vec -> Bool scalarProdProp1 v1 v2 = v1 `scalarProd` v2 == v2 `scalarProd` v1 -- distributive, avoid doubles as we get messed up precision scalarProdProp2 :: RoundR2 -> RoundR2 -> RoundR2 -> Bool scalarProdProp2 (RoundR2 v1) (RoundR2 v2) (RoundR2 v3) = v1 `scalarProd` (v2 + v3) == (v1 `scalarProd` v2) + (v1 `scalarProd` v3) -- bilinear, avoid doubles as we get messed up precision scalarProdProp3 :: RoundDouble -> RoundR2 -> RoundR2 -> RoundR2 -> Bool scalarProdProp3 (RoundDouble r) (RoundR2 v1) (RoundR2 v2) (RoundR2 v3) = v1 `scalarProd` (scalarMul r v2 + v3) == r * (v1 `scalarProd` v2) + (v1 `scalarProd` v3) -- scalar multiplication scalarProdProp4 :: RoundDouble -> RoundDouble -> RoundR2 -> RoundR2 -> Bool scalarProdProp4 (RoundDouble s1) (RoundDouble s2) (RoundR2 v1) (RoundR2 v2) = scalarMul s1 v1 `scalarProd` scalarMul s2 v2 == s1 * s2 * (v1 `scalarProd` v2) -- orthogonal scalarProdProp5 :: Positive Vec -> Positive Vec -> Bool scalarProdProp5 (Positive (R2 x1 _)) (Positive (R2 _ y2)) = scalarProd (R2 x1 0) (R2 0 y2) == 0