{-# OPTIONS_HADDOCK ignore-exports #-} module Algorithms.ConvexHull.GrahamScan where import Algebra.Vector import Algebra.VectorTypes import Diagrams.TwoD.Types import MyPrelude -- |Get all points on a convex hull by using the graham scan -- algorithm. grahamGetCH :: [PT] -> [PT] grahamGetCH vs = -- merge upper hull with lower hull while discarding -- the duplicated points from the lower hull scan uH uHRest ++ tailInit (scan lH lHRest) where -- sort lexicographically by x values (ties are resolved by y values) sortedXY = fmap p2 . sortLex . fmap unp2 $ vs -- lists for lower hull (lH, lHRest) = first reverse . splitAt 2 $ sortedXY -- lists for upper hull (uH, uHRest) = first reverse . splitAt 2 . reverse $ sortedXY -- This is the actual algorithm. -- If we have a list say: -- [(100, 100), (200, 450), (250, 250), (300, 400), (400, 200)] -- -- then this will start with: -- [(200, 450), (100, 100)] and [(250, 250), (300, 400), (400, 200)] -- -- The first list is reversed since we only care about the last -- 3 elements and want to stay efficient. scan :: [PT] -- ^ the starting convex hull points -> [PT] -- ^ the rest of the points -> [PT] -- ^ all convex hull points scan (y:z:xs) (x:ys) -- last 3 elements are ccw, but there are elements left to check | ccw z y x = scan (x:y:z:xs) ys -- not ccw, pop one out | otherwise = scan (x:z:xs) ys scan (x:y:z:xs) [] -- nothing left and last 3 elements are ccw, so return | ccw z y x = x:y:z:xs -- not ccw, pop one out | otherwise = scan (x:z:xs) [] scan xs _ = xs -- |Compute all steps of the graham scan algorithm to allow -- visualizing it. grahamGetCHSteps :: [PT] -> [[PT]] grahamGetCHSteps vs = (++) (reverse . g (length vs) lH $ lHRest) . fmap (\x -> (last . reverse . g (length vs) lH $ lHRest) ++ x) $ (init . reverse . g (length vs) uH $ uHRest) where sortedXY = fmap p2 . sortLex . fmap unp2 $ vs (lH, lHRest) = first reverse . splitAt 2 $ sortedXY (uH, uHRest) = first reverse . splitAt 2 . reverse $ sortedXY g c xs' ys' | c >= 0 = scan 0 xs' ys' : g (c - 1) xs' ys' | otherwise = [] where scan c' (y:z:xs) (x:ys) | c' >= c = reverse (y:z:xs) | ccw z y x = scan (c' + 1) (x:y:z:xs) ys | otherwise = scan (c' + 1) (x:z:xs) ys scan _ [x,y] [] = [y,x] scan c' (x:y:z:xs) [] | c' >= c = reverse (x:y:z:xs) | ccw z y x = x:y:z:xs | otherwise = scan (c' + 1) (x:z:xs) [] scan _ xs _ = reverse xs