Port to diagrams >1.3

# Conflicts:
#	Algebra/Vector.hs
#	CG2.cabal
#	Graphics/Diagram/Core.hs
#	Graphics/Diagram/Gif.hs
#	Graphics/Diagram/Gtk.hs
#	Test/Vector.hs
This commit is contained in:
2015-05-21 02:14:15 +02:00
parent 5120a44d0f
commit 984ed40c63
15 changed files with 204 additions and 209 deletions

View File

@@ -21,19 +21,19 @@ newtype PosRoundDouble = PosRoundDouble { getPRD :: Double }
deriving (Eq, Ord, Show, Read)
newtype RoundR2 = RoundR2 { getRR2 :: R2 }
newtype RoundR2 = RoundR2 { getRR2 :: V2 Double }
deriving (Eq, Ord, Show, Read)
newtype PosRoundR2 = PosRoundR2 { getPRR2 :: R2 }
newtype PosRoundR2 = PosRoundR2 { getPRR2 :: V2 Double }
deriving (Eq, Ord, Show, Read)
newtype RoundP2 = RoundP2 { getRP2 :: P2 }
newtype RoundP2 = RoundP2 { getRP2 :: P2 Double }
deriving (Eq, Ord, Show, Read)
newtype PosRoundP2 = PosRoundP2 { getPRP2 :: P2 }
newtype PosRoundP2 = PosRoundP2 { getPRP2 :: P2 Double }
deriving (Eq, Ord, Show, Read)
@@ -72,11 +72,11 @@ instance Arbitrary PosRoundP2 where
<*> (arbitrary :: Gen PosRoundDouble)
instance Arbitrary R2 where
instance Arbitrary (V2 Double) where
arbitrary = curry r2 <$> arbitrary <*> arbitrary
instance Arbitrary P2 where
instance Arbitrary (P2 Double) where
arbitrary = curry p2 <$> arbitrary <*> arbitrary
@@ -126,51 +126,51 @@ inRangeProp6 sq@((x1, y1), (x2, y2)) (Positive a) (Positive b) =
-- apply id function on the point
onPTProp1 :: P2 -> Bool
onPTProp1 :: P2 Double -> Bool
onPTProp1 pt = onPT id pt == pt
-- add a random value to the point coordinates
onPTProp2 :: P2 -> Positive R2 -> Bool
onPTProp2 pt (Positive (R2 rx ry))
onPTProp2 :: P2 Double -> Positive (V2 Double) -> Bool
onPTProp2 pt (Positive (V2 rx ry))
= onPT (\(x, y) -> (x + rx, y + ry)) pt /= pt
-- angle between two vectors both on the x-axis must be 0
getAngleProp1 :: Positive R2 -> Positive R2 -> Bool
getAngleProp1 (Positive (R2 x1 _)) (Positive (R2 x2 _))
= getAngle (R2 x1 0) (R2 x2 0) == 0
getAngleProp1 :: Positive (V2 Double) -> Positive (V2 Double) -> Bool
getAngleProp1 (Positive (V2 x1 _)) (Positive (V2 x2 _))
= getAngle (V2 x1 0) (V2 x2 0) == 0
-- angle between two vectors both on the y-axis must be 0
getAngleProp2 :: Positive R2 -> Positive R2 -> Bool
getAngleProp2 (Positive (R2 _ y1)) (Positive (R2 _ y2))
= getAngle (R2 0 y1) (R2 0 y2) == 0
getAngleProp2 :: Positive (V2 Double) -> Positive (V2 Double) -> Bool
getAngleProp2 (Positive (V2 _ y1)) (Positive (V2 _ y2))
= getAngle (V2 0 y1) (V2 0 y2) == 0
-- angle between two vectors both on the x-axis but with opposite direction
-- must be pi
getAngleProp3 :: Positive R2 -> Positive R2 -> Bool
getAngleProp3 (Positive (R2 x1 _)) (Positive (R2 x2 _))
= getAngle (R2 (negate x1) 0) (R2 x2 0) == pi
getAngleProp3 :: Positive (V2 Double) -> Positive (V2 Double) -> Bool
getAngleProp3 (Positive (V2 x1 _)) (Positive (V2 x2 _))
= getAngle (V2 (negate x1) 0) (V2 x2 0) == pi
-- angle between two vectors both on the y-axis but with opposite direction
-- must be pi
getAngleProp4 :: Positive R2 -> Positive R2 -> Bool
getAngleProp4 (Positive (R2 _ y1)) (Positive (R2 _ y2))
= getAngle (R2 0 (negate y1)) (R2 0 y2) == pi
getAngleProp4 :: Positive (V2 Double) -> Positive (V2 Double) -> Bool
getAngleProp4 (Positive (V2 _ y1)) (Positive (V2 _ y2))
= getAngle (V2 0 (negate y1)) (V2 0 y2) == pi
-- angle between vector in x-axis direction and y-axis direction must be
-- p/2
getAngleProp5 :: Positive R2 -> Positive R2 -> Bool
getAngleProp5 (Positive (R2 x1 _)) (Positive (R2 _ y2))
= getAngle (R2 x1 0) (R2 0 y2) == pi / 2
getAngleProp5 :: Positive (V2 Double) -> Positive (V2 Double) -> Bool
getAngleProp5 (Positive (V2 x1 _)) (Positive (V2 _ y2))
= getAngle (V2 x1 0) (V2 0 y2) == pi / 2
-- commutative
getAngleProp6 :: Positive R2 -> Positive R2 -> Bool
getAngleProp6 :: Positive (V2 Double) -> Positive (V2 Double) -> Bool
getAngleProp6 (Positive v1) (Positive v2)
= getAngle v1 v2 == getAngle v2 v1
@@ -183,7 +183,7 @@ getAngleProp7 (PosRoundR2 v)
-- commutative
scalarProdProp1 :: R2 -> R2 -> Bool
scalarProdProp1 :: (V2 Double) -> (V2 Double) -> Bool
scalarProdProp1 v1 v2 = v1 `scalarProd` v2 == v2 `scalarProd` v1
@@ -212,9 +212,9 @@ scalarProdProp4 (RoundDouble s1) (RoundDouble s2) (RoundR2 v1) (RoundR2 v2)
-- orthogonal
scalarProdProp5 :: Positive R2 -> Positive R2 -> Bool
scalarProdProp5 (Positive (R2 x1 _)) (Positive (R2 _ y2))
= scalarProd (R2 x1 0) (R2 0 y2) == 0
scalarProdProp5 :: Positive (V2 Double) -> Positive (V2 Double) -> Bool
scalarProdProp5 (Positive (V2 x1 _)) (Positive (V2 _ y2))
= scalarProd (V2 x1 0) (V2 0 y2) == 0
-- this is almost the same as the function definition
@@ -226,49 +226,49 @@ dimToSquareProp1 (x1, x2) (y1, y2) =
-- multiply scalar with result of vecLength or with the vector itself...
-- both results must be the same. We can't check against 0
-- because of sqrt in vecLength.
vecLengthProp1 :: PosRoundDouble -> R2 -> Bool
vecLengthProp1 :: PosRoundDouble -> (V2 Double) -> Bool
vecLengthProp1 (PosRoundDouble r) v
= abs (vecLength v * r - vecLength (scalarMul r v)) < 0.0001
-- convert to vector and back again
pt2VecProp1 :: P2 -> Bool
pt2VecProp1 :: P2 Double -> Bool
pt2VecProp1 pt = (vec2Pt . pt2Vec $ pt) == pt
-- unbox coordinates and check if equal
pt2VecProp2 :: P2 -> Bool
pt2VecProp2 :: P2 Double -> Bool
pt2VecProp2 pt = (unr2 . pt2Vec $ pt) == unp2 pt
-- convert to point and back again
vec2PtProp1 :: R2 -> Bool
vec2PtProp1 :: V2 Double -> Bool
vec2PtProp1 v = (pt2Vec . vec2Pt $ v) == v
-- unbox coordinates and check if equal
vec2PtProp2 :: R2 -> Bool
vec2PtProp2 :: V2 Double -> Bool
vec2PtProp2 v = (unp2 . vec2Pt $ v) == unr2 v
-- vector from a to b must not be the same as b to a
vp2Prop1 :: P2 -> P2 -> Bool
vp2Prop1 :: P2 Double -> P2 Double -> Bool
vp2Prop1 p1' p2'
| p1' == origin && p2' == origin = True
| otherwise = vp2 p1' p2' /= vp2 p2' p1'
-- negating vector from a to be must be the same as vector b to a
vp2Prop2 :: P2 -> P2 -> Bool
vp2Prop2 :: P2 Double -> P2 Double -> Bool
vp2Prop2 p1' p2'
| p1' == origin && p2' == origin = True
| otherwise = vp2 p1' p2' == (\(R2 x y) -> negate x ^& negate y)
| otherwise = vp2 p1' p2' == (\(V2 x y) -> negate x ^& negate y)
(vp2 p2' p1')
&&
vp2 p2' p1' == (\(R2 x y) -> negate x ^& negate y)
vp2 p2' p1' == (\(V2 x y) -> negate x ^& negate y)
(vp2 p1' p2')
-- determinant of the 3 same points is always 0
detProp1 :: P2 -> Bool
detProp1 :: P2 Double -> Bool
detProp1 pt' = det pt' pt' pt' == 0