Port to diagrams >1.3
# Conflicts: # Algebra/Vector.hs # CG2.cabal # Graphics/Diagram/Core.hs # Graphics/Diagram/Gif.hs # Graphics/Diagram/Gtk.hs # Test/Vector.hs
This commit is contained in:
@@ -75,18 +75,18 @@ ys = []
|
||||
return [(100, 100), (400, 200)]
|
||||
=========================================================
|
||||
--}
|
||||
grahamCH :: [P2] -> [P2]
|
||||
grahamCH :: [P2 Double] -> [P2 Double]
|
||||
grahamCH vs = grahamUCH vs ++ (tailInit . grahamLCH $ vs)
|
||||
|
||||
|
||||
-- |Get the lower part of the convex hull.
|
||||
grahamLCH :: [P2] -> [P2]
|
||||
grahamLCH :: [P2 Double] -> [P2 Double]
|
||||
grahamLCH vs = uncurry (\x y -> last . scanH x $ y)
|
||||
(first reverse . splitAt 3 . sortedXY $ vs)
|
||||
|
||||
|
||||
-- |Get the upper part of the convex hull.
|
||||
grahamUCH :: [P2] -> [P2]
|
||||
grahamUCH :: [P2 Double] -> [P2 Double]
|
||||
grahamUCH vs = uncurry (\x y -> last . scanH x $ y)
|
||||
(first reverse . splitAt 3 . reverse . sortedXY $ vs)
|
||||
|
||||
@@ -96,9 +96,9 @@ grahamUCH vs = uncurry (\x y -> last . scanH x $ y)
|
||||
-- If it's the upper or lower half depends on the input.
|
||||
-- Also, the first list is expected to be reversed since we only care
|
||||
-- about the last 3 elements and want to stay efficient.
|
||||
scanH :: [P2] -- ^ the first 3 starting points in reversed order
|
||||
-> [P2] -- ^ the rest of the points
|
||||
-> [[P2]] -- ^ all convex hull points iterations for the half
|
||||
scanH :: [P2 Double] -- ^ the first 3 starting points in reversed order
|
||||
-> [P2 Double] -- ^ the rest of the points
|
||||
-> [[P2 Double]] -- ^ all convex hull points iterations for the half
|
||||
scanH hs@(x:y:z:xs) (r':rs')
|
||||
| notcw z y x = hs : scanH (r':hs) rs'
|
||||
| otherwise = hs : scanH (x:z:xs) (r':rs')
|
||||
@@ -112,12 +112,12 @@ scanH hs _ = [hs]
|
||||
-- |Compute all steps of the graham scan algorithm to allow
|
||||
-- visualizing it.
|
||||
-- Whether the upper or lower hull is computed depends on the input.
|
||||
grahamCHSteps :: Int -> [P2] -> [P2] -> [[P2]]
|
||||
grahamCHSteps :: Int -> [P2 Double] -> [P2 Double] -> [[P2 Double]]
|
||||
grahamCHSteps c xs' ys' = take c . scanH xs' $ ys'
|
||||
|
||||
|
||||
-- |Get all iterations of the upper hull of the graham scan algorithm.
|
||||
grahamUHSteps :: [P2] -> [[P2]]
|
||||
grahamUHSteps :: [P2 Double] -> [[P2 Double]]
|
||||
grahamUHSteps vs =
|
||||
(++) [getLastX 2 . sortedXY $ vs]
|
||||
. rmdups
|
||||
@@ -128,7 +128,7 @@ grahamUHSteps vs =
|
||||
|
||||
|
||||
-- |Get all iterations of the lower hull of the graham scan algorithm.
|
||||
grahamLHSteps :: [P2] -> [[P2]]
|
||||
grahamLHSteps :: [P2 Double] -> [[P2 Double]]
|
||||
grahamLHSteps vs =
|
||||
(++) [take 2 . sortedXY $ vs]
|
||||
. rmdups
|
||||
|
||||
@@ -42,9 +42,9 @@ instance Not Direction where
|
||||
|
||||
|
||||
-- |Construct a kd-tree from a list of points in O(n log n).
|
||||
kdTree :: [P2] -- ^ list of points to construct the kd-tree from
|
||||
kdTree :: [P2 Double] -- ^ list of points to construct the kd-tree from
|
||||
-> Direction -- ^ initial direction of the root-node
|
||||
-> KDTree P2 -- ^ resulting kd-tree
|
||||
-> KDTree (P2 Double) -- ^ resulting kd-tree
|
||||
kdTree xs' = go (sortedX xs') (sortedY xs')
|
||||
where
|
||||
go [] _ _ = KTNil
|
||||
@@ -67,10 +67,10 @@ kdTree xs' = go (sortedX xs') (sortedY xs')
|
||||
-- If you want to partition against the pivot of X, then you pass
|
||||
-- partition' (pivot xs) (ys, xs)
|
||||
-- and get ((y1, y2), (x1, x2)).
|
||||
partition' :: P2 -- ^ the pivot to partition against
|
||||
-> (P2 -> P2 -> Ordering) -- ^ ptCmpY or ptCmpX
|
||||
-> ([P2], [P2]) -- ^ both lists (X, Y) or (Y, X)
|
||||
-> (([P2], [P2]), ([P2], [P2])) -- ^ ((x1, x2), (y1, y2)) or
|
||||
partition' :: P2 Double -- ^ the pivot to partition against
|
||||
-> (P2 Double -> P2 Double -> Ordering) -- ^ ptCmpY or ptCmpX
|
||||
-> ([P2 Double], [P2 Double]) -- ^ both lists (X, Y) or (Y, X)
|
||||
-> (([P2 Double], [P2 Double]), ([P2 Double], [P2 Double])) -- ^ ((x1, x2), (y1, y2)) or
|
||||
-- ((y1, y2), (x1, x2))
|
||||
partition' piv cmp' (xs, ys) = ((x1, x2), (y1, y2))
|
||||
where
|
||||
@@ -83,16 +83,16 @@ partition' piv cmp' (xs, ys) = ((x1, x2), (y1, y2))
|
||||
-- |Partition two sorted lists of points X and Y against the pivot of
|
||||
-- Y. This function is unsafe as it does not check if there is a valid
|
||||
-- pivot.
|
||||
partitionY :: ([P2], [P2]) -- ^ both lists (X, Y)
|
||||
-> (([P2], [P2]), ([P2], [P2])) -- ^ ((x1, x2), (y1, y2))
|
||||
partitionY :: ([P2 Double], [P2 Double]) -- ^ both lists (X, Y)
|
||||
-> (([P2 Double], [P2 Double]), ([P2 Double], [P2 Double])) -- ^ ((x1, x2), (y1, y2))
|
||||
partitionY (xs, ys) = partition' (fromJust . pivot $ ys) ptCmpY (xs, ys)
|
||||
|
||||
|
||||
-- |Partition two sorted lists of points X and Y against the pivot of
|
||||
-- X. This function is unsafe as it does not check if there is a valid
|
||||
-- pivot.
|
||||
partitionX :: ([P2], [P2]) -- ^ both lists (X, Y)
|
||||
-> (([P2], [P2]), ([P2], [P2])) -- ^ ((x1, x2), (y1, y2))
|
||||
partitionX :: ([P2 Double], [P2 Double]) -- ^ both lists (X, Y)
|
||||
-> (([P2 Double], [P2 Double]), ([P2 Double], [P2 Double])) -- ^ ((x1, x2), (y1, y2))
|
||||
partitionX (xs, ys) = (\(x, y) -> (y, x))
|
||||
. partition' (fromJust . pivot $ xs) ptCmpX $ (ys, xs)
|
||||
|
||||
@@ -100,9 +100,9 @@ partitionX (xs, ys) = (\(x, y) -> (y, x))
|
||||
-- |Execute a range search in O(log n). It returns a tuple
|
||||
-- of the points found in the range and also gives back a pretty
|
||||
-- rose tree suitable for printing.
|
||||
rangeSearch :: KDTree P2 -- ^ tree to search in
|
||||
rangeSearch :: KDTree (P2 Double) -- ^ tree to search in
|
||||
-> ((Double, Double), (Double, Double)) -- ^ square describing the range
|
||||
-> ([P2], Tree String)
|
||||
-> ([P2 Double], Tree String)
|
||||
rangeSearch kd' sq' = (goPt kd' sq', goTree kd' sq' True)
|
||||
where
|
||||
-- either y1 or x1 depending on the orientation
|
||||
@@ -112,7 +112,7 @@ rangeSearch kd' sq' = (goPt kd' sq', goTree kd' sq' True)
|
||||
-- either the second or first of the tuple, depending on the orientation
|
||||
cur' dir = if' (dir == Vertical) snd fst
|
||||
-- All points in the range.
|
||||
goPt :: KDTree P2 -> ((Double, Double), (Double, Double)) -> [P2]
|
||||
goPt :: KDTree (P2 Double) -> ((Double, Double), (Double, Double)) -> [P2 Double]
|
||||
goPt KTNil _ = []
|
||||
goPt (KTNode ln pt dir rn) sq =
|
||||
[pt | inRange sq pt]
|
||||
@@ -124,7 +124,7 @@ rangeSearch kd' sq' = (goPt kd' sq', goTree kd' sq' True)
|
||||
(goPt rn sq)
|
||||
[])
|
||||
-- A pretty rose tree suitable for printing.
|
||||
goTree :: KDTree P2 -> ((Double, Double), (Double, Double)) -> Bool -> Tree String
|
||||
goTree :: KDTree (P2 Double) -> ((Double, Double), (Double, Double)) -> Bool -> Tree String
|
||||
goTree KTNil _ _ = Node "nil" []
|
||||
goTree (KTNode ln pt dir rn) sq vis
|
||||
| ln == KTNil && rn == KTNil = Node treeText []
|
||||
@@ -181,7 +181,7 @@ getDirection _ = Nothing
|
||||
|
||||
|
||||
-- |Convert a kd-tree to a rose tree, for pretty printing.
|
||||
kdTreeToRoseTree :: KDTree P2 -> Tree String
|
||||
kdTreeToRoseTree :: KDTree (P2 Double) -> Tree String
|
||||
kdTreeToRoseTree (KTNil) = Node "nil" []
|
||||
kdTreeToRoseTree (KTNode ln val _ rn) =
|
||||
Node (show . unp2 $ val) [kdTreeToRoseTree ln, kdTreeToRoseTree rn]
|
||||
|
||||
@@ -18,14 +18,14 @@ import QueueEx
|
||||
-- successor are saved for convenience.
|
||||
data PolyPT =
|
||||
PolyA {
|
||||
id' :: P2
|
||||
, pre :: P2
|
||||
, suc :: P2
|
||||
id' :: P2 Double
|
||||
, pre :: P2 Double
|
||||
, suc :: P2 Double
|
||||
}
|
||||
| PolyB {
|
||||
id' :: P2
|
||||
, pre :: P2
|
||||
, suc :: P2
|
||||
id' :: P2 Double
|
||||
, pre :: P2 Double
|
||||
, suc :: P2 Double
|
||||
}
|
||||
deriving (Show, Eq)
|
||||
|
||||
@@ -42,7 +42,7 @@ isPolyB = not . isPolyA
|
||||
-- |Shift a list of sorted convex hull points of a polygon so that
|
||||
-- the first element in the list is the one with the highest y-coordinate.
|
||||
-- This is done in O(n).
|
||||
sortLexPoly :: [P2] -> [P2]
|
||||
sortLexPoly :: [P2 Double] -> [P2 Double]
|
||||
sortLexPoly ps = maybe [] (`shiftM` ps) (elemIndex (yMax ps) ps)
|
||||
where
|
||||
yMax = foldl1 (\x y -> if ptCmpY x y == GT then x else y)
|
||||
@@ -50,8 +50,8 @@ sortLexPoly ps = maybe [] (`shiftM` ps) (elemIndex (yMax ps) ps)
|
||||
|
||||
-- |Make a PolyPT list out of a regular list of points, so
|
||||
-- the predecessor and successors are all saved.
|
||||
mkPolyPTList :: (P2 -> P2 -> P2 -> PolyPT) -- ^ PolyA or PolyB function
|
||||
-> [P2] -- ^ polygon points
|
||||
mkPolyPTList :: (P2 Double -> P2 Double -> P2 Double -> PolyPT) -- ^ PolyA or PolyB function
|
||||
-> [P2 Double] -- ^ polygon points
|
||||
-> [PolyPT]
|
||||
mkPolyPTList f' pts@(x':y':_:_) =
|
||||
f' x' (last pts) y' : go f' pts
|
||||
@@ -64,7 +64,7 @@ mkPolyPTList _ _ = []
|
||||
|
||||
-- |Sort the points of two polygons according to their y-coordinates,
|
||||
-- while saving the origin of that point. This is done in O(n).
|
||||
sortLexPolys :: ([P2], [P2]) -> [PolyPT]
|
||||
sortLexPolys :: ([P2 Double], [P2 Double]) -> [PolyPT]
|
||||
sortLexPolys (pA'@(_:_), pB'@(_:_)) =
|
||||
queueToList $ go (Q.fromList . mkPolyPTList PolyA . sortLexPoly $ pA')
|
||||
(Q.fromList . mkPolyPTList PolyB . sortLexPoly $ pB')
|
||||
@@ -104,7 +104,7 @@ sortLexPolys _ = []
|
||||
|
||||
-- |Get all points that intersect between both polygons. This is done
|
||||
-- in O(n).
|
||||
intersectionPoints :: [PolyPT] -> [P2]
|
||||
intersectionPoints :: [PolyPT] -> [P2 Double]
|
||||
intersectionPoints xs' = rmdups . go $ xs'
|
||||
where
|
||||
go [] = []
|
||||
@@ -113,7 +113,7 @@ intersectionPoints xs' = rmdups . go $ xs'
|
||||
|
||||
-- Get the scan line or in other words the
|
||||
-- Segment pairs we are going to check for intersection.
|
||||
scanLine :: [PolyPT] -> ([(P2, P2)], [(P2, P2)])
|
||||
scanLine :: [PolyPT] -> ([(P2 Double, P2 Double)], [(P2 Double, P2 Double)])
|
||||
scanLine sp@(_:_) = (,) (getSegment isPolyA) (getSegment isPolyB)
|
||||
where
|
||||
getSegment f = fromMaybe []
|
||||
@@ -124,7 +124,7 @@ intersectionPoints xs' = rmdups . go $ xs'
|
||||
-- Gets the actual intersections between the segments of
|
||||
-- both polygons we currently examine. This is done in O(1)
|
||||
-- since we have max 4 segments.
|
||||
segIntersections :: ([(P2, P2)], [(P2, P2)]) -> [P2]
|
||||
segIntersections :: ([(P2 Double, P2 Double)], [(P2 Double, P2 Double)]) -> [P2 Double]
|
||||
segIntersections (a@(_:_), b@(_:_)) =
|
||||
catMaybes
|
||||
. fmap (\[x, y] -> intersectSeg' x y)
|
||||
|
||||
@@ -19,12 +19,12 @@ data VCategory = VStart
|
||||
|
||||
|
||||
-- |Classify all vertices on a polygon into five categories (see VCategory).
|
||||
classifyList :: [P2] -> [(P2, VCategory)]
|
||||
classifyList :: [P2 Double] -> [(P2 Double, VCategory)]
|
||||
classifyList p@(x:y:_:_) =
|
||||
-- need to handle the first and last element separately
|
||||
[classify (last p) x y] ++ go p ++ [classify (last . init $ p) (last p) x]
|
||||
where
|
||||
go :: [P2] -> [(P2, VCategory)]
|
||||
go :: [P2 Double] -> [(P2 Double, VCategory)]
|
||||
go (x':y':z':xs) = classify x' y' z' : go (y':z':xs)
|
||||
go _ = []
|
||||
classifyList _ = []
|
||||
@@ -32,10 +32,10 @@ classifyList _ = []
|
||||
|
||||
-- |Classify a vertex on a polygon given it's next and previous vertex
|
||||
-- into five categories (see VCategory).
|
||||
classify :: P2 -- ^ prev vertex
|
||||
-> P2 -- ^ classify this one
|
||||
-> P2 -- ^ next vertex
|
||||
-> (P2, VCategory)
|
||||
classify :: P2 Double -- ^ prev vertex
|
||||
-> P2 Double -- ^ classify this one
|
||||
-> P2 Double -- ^ next vertex
|
||||
-> (P2 Double, VCategory)
|
||||
classify prev v next
|
||||
| isVStart prev v next = (v, VStart)
|
||||
| isVSplit prev v next = (v, VSplit)
|
||||
@@ -46,9 +46,9 @@ classify prev v next
|
||||
|
||||
-- |Whether the vertex, given it's next and previous vertex,
|
||||
-- is a start vertex.
|
||||
isVStart :: P2 -- ^ previous vertex
|
||||
-> P2 -- ^ vertice to check
|
||||
-> P2 -- ^ next vertex
|
||||
isVStart :: P2 Double -- ^ previous vertex
|
||||
-> P2 Double -- ^ vertice to check
|
||||
-> P2 Double -- ^ next vertex
|
||||
-> Bool
|
||||
isVStart prev v next =
|
||||
ptCmpY next v == LT && ptCmpY prev v == LT && cw next v prev
|
||||
@@ -56,9 +56,9 @@ isVStart prev v next =
|
||||
|
||||
-- |Whether the vertex, given it's next and previous vertex,
|
||||
-- is a split vertex.
|
||||
isVSplit :: P2 -- ^ previous vertex
|
||||
-> P2 -- ^ vertice to check
|
||||
-> P2 -- ^ next vertex
|
||||
isVSplit :: P2 Double -- ^ previous vertex
|
||||
-> P2 Double -- ^ vertice to check
|
||||
-> P2 Double -- ^ next vertex
|
||||
-> Bool
|
||||
isVSplit prev v next =
|
||||
ptCmpY prev v == LT && ptCmpY next v == LT && cw prev v next
|
||||
@@ -66,9 +66,9 @@ isVSplit prev v next =
|
||||
|
||||
-- |Whether the vertex, given it's next and previous vertex,
|
||||
-- is an end vertex.
|
||||
isVEnd :: P2 -- ^ previous vertex
|
||||
-> P2 -- ^ vertice to check
|
||||
-> P2 -- ^ next vertex
|
||||
isVEnd :: P2 Double -- ^ previous vertex
|
||||
-> P2 Double -- ^ vertice to check
|
||||
-> P2 Double -- ^ next vertex
|
||||
-> Bool
|
||||
isVEnd prev v next =
|
||||
ptCmpY prev v == GT && ptCmpY next v == GT && cw next v prev
|
||||
@@ -76,9 +76,9 @@ isVEnd prev v next =
|
||||
|
||||
-- |Whether the vertex, given it's next and previous vertex,
|
||||
-- is a merge vertex.
|
||||
isVMerge :: P2 -- ^ previous vertex
|
||||
-> P2 -- ^ vertice to check
|
||||
-> P2 -- ^ next vertex
|
||||
isVMerge :: P2 Double -- ^ previous vertex
|
||||
-> P2 Double -- ^ vertice to check
|
||||
-> P2 Double -- ^ next vertex
|
||||
-> Bool
|
||||
isVMerge prev v next =
|
||||
ptCmpY next v == GT && ptCmpY prev v == GT && cw prev v next
|
||||
@@ -86,9 +86,9 @@ isVMerge prev v next =
|
||||
|
||||
-- |Whether the vertex, given it's next and previous vertex,
|
||||
-- is a regular vertex.
|
||||
isVRegular :: P2 -- ^ previous vertex
|
||||
-> P2 -- ^ vertice to check
|
||||
-> P2 -- ^ next vertex
|
||||
isVRegular :: P2 Double -- ^ previous vertex
|
||||
-> P2 Double -- ^ vertice to check
|
||||
-> P2 Double -- ^ next vertex
|
||||
-> Bool
|
||||
isVRegular prev v next =
|
||||
(not . isVStart prev v $ next)
|
||||
@@ -99,7 +99,7 @@ isVRegular prev v next =
|
||||
|
||||
|
||||
-- |A polygon P is y-monotone, if it has no split and merge vertices.
|
||||
isYmonotone :: [P2] -> Bool
|
||||
isYmonotone :: [P2 Double] -> Bool
|
||||
isYmonotone poly =
|
||||
not
|
||||
. any (\x -> x == VSplit || x == VMerge)
|
||||
@@ -108,12 +108,12 @@ isYmonotone poly =
|
||||
|
||||
|
||||
-- |Partition P into y-monotone pieces.
|
||||
monotonePartitioning :: [P2] -> [[P2]]
|
||||
monotonePartitioning :: [P2 Double] -> [[P2 Double]]
|
||||
monotonePartitioning pts
|
||||
| isYmonotone pts = [pts]
|
||||
| otherwise = go (monotoneDiagonals pts) pts
|
||||
where
|
||||
go :: [(P2, P2)] -> [P2] -> [[P2]]
|
||||
go :: [(P2 Double, P2 Double)] -> [P2 Double] -> [[P2 Double]]
|
||||
go (x:xs) pts'@(_:_)
|
||||
| isYmonotone a && isYmonotone b = [a, b]
|
||||
| isYmonotone b = b : go xs a
|
||||
@@ -125,37 +125,37 @@ monotonePartitioning pts
|
||||
|
||||
-- |Try to eliminate the merge and split vertices by computing the
|
||||
-- diagonals we have to use for splitting the polygon.
|
||||
monotoneDiagonals :: [P2] -> [(P2, P2)]
|
||||
monotoneDiagonals :: [P2 Double] -> [(P2 Double, P2 Double)]
|
||||
monotoneDiagonals pts = catMaybes . go $ classifyList pts
|
||||
where
|
||||
go :: [(P2, VCategory)] -> [Maybe (P2, P2)]
|
||||
go :: [(P2 Double, VCategory)] -> [Maybe (P2 Double, P2 Double)]
|
||||
go (x:xs) = case snd x of
|
||||
VMerge -> getSeg (belowS . fst $ x) (fst x) : go xs
|
||||
VSplit -> getSeg (aboveS . fst $ x) (fst x) : go xs
|
||||
_ -> [] ++ go xs
|
||||
go [] = []
|
||||
getSeg :: [P2] -- all points above/below the current point
|
||||
-> P2 -- current point
|
||||
-> Maybe (P2, P2)
|
||||
getSeg :: [P2 Double] -- all points above/below the current point
|
||||
-> P2 Double -- current point
|
||||
-> Maybe (P2 Double, P2 Double)
|
||||
getSeg [] _ = Nothing
|
||||
getSeg (z:zs) pt
|
||||
| isInsidePoly pts (z, pt) = Just (z, pt)
|
||||
| otherwise = getSeg zs pt
|
||||
aboveS :: P2 -> [P2]
|
||||
aboveS :: P2 Double -> [P2 Double]
|
||||
aboveS pt = tail . dropWhile (/= pt) $ sortedYX pts
|
||||
belowS :: P2 -> [P2]
|
||||
belowS :: P2 Double -> [P2 Double]
|
||||
belowS pt = reverse . takeWhile (/= pt) $ sortedYX pts
|
||||
|
||||
|
||||
-- |Triangulate a y-monotone polygon.
|
||||
triangulate :: [P2] -> [[P2]]
|
||||
triangulate :: [P2 Double] -> [[P2 Double]]
|
||||
triangulate pts =
|
||||
go pts . A.first reverse . splitAt 3 . reverse . sortedYX $ pts
|
||||
where
|
||||
go :: [P2] -- current polygon
|
||||
-> ([P2], [P2]) -- (stack of visited vertices, rest)
|
||||
go :: [P2 Double] -- current polygon
|
||||
-> ([P2 Double], [P2 Double]) -- (stack of visited vertices, rest)
|
||||
-- sorted by Y-coordinate
|
||||
-> [[P2]]
|
||||
-> [[P2 Double]]
|
||||
go xs (p@[_, _], r:rs) = go xs (r:p, rs)
|
||||
go xs (p@(u:vi:vi1:ys), rs)
|
||||
-- case 1 and 3
|
||||
|
||||
@@ -80,9 +80,9 @@ isSEchild _ = False
|
||||
-- |Builds a quadtree of a list of points which recursively divides up 2D
|
||||
-- space into quadrants, so that every leaf-quadrant stores either zero or one
|
||||
-- point.
|
||||
quadTree :: [P2] -- ^ the points to divide
|
||||
quadTree :: [P2 Double] -- ^ the points to divide
|
||||
-> ((Double, Double), (Double, Double)) -- ^ the initial square around the points
|
||||
-> QuadTree P2 -- ^ the quad tree
|
||||
-> QuadTree (P2 Double) -- ^ the quad tree
|
||||
quadTree [] _ = TNil
|
||||
quadTree [pt] _ = TLeaf pt
|
||||
quadTree pts sq = TNode (quadTree nWPT . nwSq $ sq) (quadTree nEPT . neSq $ sq)
|
||||
@@ -97,7 +97,7 @@ quadTree pts sq = TNode (quadTree nWPT . nwSq $ sq) (quadTree nEPT . neSq $ sq)
|
||||
|
||||
-- |Get all squares of a quad tree.
|
||||
quadTreeSquares :: ((Double, Double), (Double, Double)) -- ^ the initial square around the points
|
||||
-> QuadTree P2 -- ^ the quad tree
|
||||
-> QuadTree (P2 Double) -- ^ the quad tree
|
||||
-> [((Double, Double), (Double, Double))] -- ^ all squares of the quad tree
|
||||
quadTreeSquares sq (TNil) = [sq]
|
||||
quadTreeSquares sq (TLeaf _) = [sq]
|
||||
@@ -203,7 +203,7 @@ lookupByNeighbors :: [Orient] -> QTZipper a -> Maybe (QTZipper a)
|
||||
lookupByNeighbors = flip (foldlM (flip findNeighbor))
|
||||
|
||||
|
||||
quadTreeToRoseTree :: QTZipper P2 -> Tree String
|
||||
quadTreeToRoseTree :: QTZipper (P2 Double) -> Tree String
|
||||
quadTreeToRoseTree z' = go (rootNode z')
|
||||
where
|
||||
go z = case z of
|
||||
|
||||
Reference in New Issue
Block a user