TESTS: add some convenience types

This commit is contained in:
hasufell 2014-12-17 23:21:26 +01:00
parent 90702e6469
commit 48fb68355b
No known key found for this signature in database
GPG Key ID: 220CD1C5BDEED020

View File

@ -11,6 +11,45 @@ import Diagrams.TwoD.Types
import Test.QuickCheck import Test.QuickCheck
newtype RoundDouble = RoundDouble { getRD :: Double }
deriving (Eq, Ord, Show, Read)
newtype PosRoundDouble = PosRoundDouble { getPRD :: Double }
deriving (Eq, Ord, Show, Read)
newtype RoundR2 = RoundR2 { getRR2 :: R2 }
deriving (Eq, Ord, Show, Read)
newtype PosRoundR2 = PosRoundR2 { getPRR2 :: R2 }
deriving (Eq, Ord, Show, Read)
instance Arbitrary RoundDouble where
arbitrary = RoundDouble <$> fromIntegral <$> (arbitrary :: Gen Int)
instance Arbitrary PosRoundDouble where
arbitrary = PosRoundDouble
<$> fromIntegral
-- (maxBound :: Int) instead of 100000 generates doubles
<$> (choose (1, 10000) :: Gen Int)
instance Arbitrary RoundR2 where
arbitrary = curry (RoundR2 . r2 . (getRD *** getRD))
<$> (arbitrary :: Gen RoundDouble)
<*> (arbitrary :: Gen RoundDouble)
instance Arbitrary PosRoundR2 where
arbitrary = curry (PosRoundR2 . r2 . (getPRD *** getPRD))
<$> (arbitrary :: Gen PosRoundDouble)
<*> (arbitrary :: Gen PosRoundDouble)
instance Arbitrary R2 where instance Arbitrary R2 where
arbitrary = curry r2 <$> arbitrary <*> arbitrary arbitrary = curry r2 <$> arbitrary <*> arbitrary
@ -109,36 +148,27 @@ scalarProdProp1 v1 v2 = v1 `scalarProd` v2 == v2 `scalarProd` v1
-- distributive, avoid doubles as we get messed up precision -- distributive, avoid doubles as we get messed up precision
scalarProdProp2 :: (Int, Int) -> (Int, Int) -> (Int, Int) -> Bool scalarProdProp2 :: RoundR2 -> RoundR2 -> RoundR2 -> Bool
scalarProdProp2 v1 v2 v3 = scalarProdProp2 (RoundR2 v1) (RoundR2 v2) (RoundR2 v3) =
v1' `scalarProd` (v2' + v3') v1 `scalarProd` (v2 + v3)
== ==
(v1' `scalarProd` v2') + (v1' `scalarProd` v3') (v1 `scalarProd` v2) + (v1 `scalarProd` v3)
where
[v1', v2', v3'] = fmap (r2 . (fromIntegral *** fromIntegral)) [v1, v2, v3]
-- bilinear, avoid doubles as we get messed up precision -- bilinear, avoid doubles as we get messed up precision
scalarProdProp3 :: Int -> (Int, Int) -> (Int, Int) -> (Int, Int) -> Bool scalarProdProp3 :: RoundDouble -> RoundR2 -> RoundR2 -> RoundR2 -> Bool
scalarProdProp3 r v1 v2 v3 = scalarProdProp3 (RoundDouble r) (RoundR2 v1) (RoundR2 v2) (RoundR2 v3) =
v1' `scalarProd` (scalarMul r' v2' + v3') v1 `scalarProd` (scalarMul r v2 + v3)
== ==
r' * (v1' `scalarProd` v2') + (v1' `scalarProd` v3') r * (v1 `scalarProd` v2) + (v1 `scalarProd` v3)
where
[v1', v2', v3'] = fmap (r2 . (fromIntegral *** fromIntegral)) [v1, v2, v3]
r' = fromIntegral r
-- scalar multiplication -- scalar multiplication
scalarProdProp4 :: Int -> Int -> (Int, Int) -> (Int, Int) -> Bool scalarProdProp4 :: RoundDouble -> RoundDouble -> RoundR2 -> RoundR2 -> Bool
scalarProdProp4 s1 s2 v1 v2 scalarProdProp4 (RoundDouble s1) (RoundDouble s2) (RoundR2 v1) (RoundR2 v2)
= scalarMul s1' v1' `scalarProd` scalarMul s2' v2' = scalarMul s1 v1 `scalarProd` scalarMul s2 v2
== ==
s1' * s2' * (v1' `scalarProd` v2') s1 * s2 * (v1 `scalarProd` v2)
where
[v1', v2'] = fmap (r2 . (fromIntegral *** fromIntegral)) [v1, v2]
s1' = fromIntegral s1
s2' = fromIntegral s2
-- orthogonal -- orthogonal