cga/Graphics/Diagram/AlgoDiags.hs

251 lines
7.9 KiB
Haskell
Raw Normal View History

{-# OPTIONS_HADDOCK ignore-exports #-}
module Graphics.Diagram.AlgoDiags where
import Algebra.Vector(PT,Square)
import Algorithms.GrahamScan
import Algorithms.QuadTree
import Algorithms.KDTree
import Algorithms.PolygonIntersection
import Data.Maybe
import Data.Monoid
import Data.Tree
import Diagrams.Backend.Cairo
import Diagrams.Prelude hiding ((<>))
import Diagrams.TwoD.Layout.Tree
import Graphics.Diagram.Core
import Parser.PathParser
-- |Draw the lines of the polygon.
polyLines :: Diag
polyLines = Diag f
where
f _ [] = mempty
f _ (x:y:_) =
strokePoly x <> strokePoly y
where
strokePoly x' = (strokeTrail . fromVertices $ x' ++ [head x'])
# moveTo (head x') # lc black
f _ _ = mempty
-- |Show the intersection points of two polygons as red dots.
polyIntersection :: Diag
polyIntersection = Diag f
where
f p (x:y:_) = drawP vtpi (dotSize p) # fc red # lc red
where
vtpi = intersectionPoints . sortLexPolys $ (sortLexPoly x, sortLexPoly y)
f _ _ = mempty
-- |Show the coordinate text of the intersection points of two polygons.
polyIntersectionText :: Diag
polyIntersectionText = Diag f
where
f p (x:y:_)
| showCoordText p = position . zip vtpi $ (pointToTextCoord # fc red <$> vtpi)
# translate (r2 (0, 10))
| otherwise = mempty
where
vtpi = intersectionPoints
. sortLexPolys
$ (sortLexPoly x,
sortLexPoly y)
f _ _ = mempty
-- |Create a diagram which shows the points of the convex hull.
convexHP :: Diag
convexHP = Diag f
where
f p [vt] = drawP (grahamCH vt) (dotSize p) # fc red # lc red
f _ _ = mempty
-- |Show coordinates as text above the convex hull points.
convexHPText :: Diag
convexHPText = Diag f
where
f p [vt]
| showCoordText p =
position $ zip vtchf (pointToTextCoord <$> vtchf) # translate (r2 (0, 10))
| otherwise = mempty
where
vtchf = grahamCH vt
f _ _ = mempty
-- |Create a diagram which shows the lines along the convex hull
-- points.
convexHLs :: Diag
convexHLs = Diag f
where
f _ [vt] =
(strokeTrail . fromVertices . flip (++) [head $ grahamCH vt] . grahamCH $ vt)
# moveTo (head $ grahamCH vt) # lc red
f _ _ = mempty
-- |Create list of diagrama which describe the lines along points of a half
-- convex hull, for each iteration of the algorithm. Which half is chosen
-- depends on the input.
convexHStepsLs :: Diag
convexHStepsLs = GifDiag f
where
f _ col g vt = fmap mkChDiag (g vt)
where
mkChDiag vt' = (strokeTrail . fromVertices $ vt') # moveTo (head vt') # lc col
-- |Create a diagram that shows all squares of the RangeSearch algorithm
-- from the quad tree.
squares :: Diag
squares = Diag f
where
f p [vt] =
mconcat
$ (uncurry rectByDiagonal # lw ultraThin)
<$>
(quadTreeSquares (xDimension p, yDimension p)
. quadTree vt
$ (xDimension p, yDimension p))
f _ _ = mempty
-- |Draw the squares of the kd-tree.
kdSquares :: Diag
kdSquares = Diag f
where
f p [vt] =
mconcat
. fmap (uncurry (~~))
$ kdLines (kdTree vt Horizontal) (xDimension p, yDimension p)
where
-- Gets all lines that make up the kdSquares. Every line is
-- described by two points, start and end respectively.
kdLines :: KDTree PT -> Square -> [(PT, PT)]
kdLines (KTNode ln pt Horizontal rn) ((xmin, xmax), (ymin, ymax)) =
(\(x, _) -> [(p2 (x, ymin), p2 (x, ymax))])
(unp2 pt)
++ kdLines ln ((xmin, x'), (ymin, ymax))
++ kdLines rn ((x', xmax), (ymin, ymax))
where
(x', _) = unp2 pt
kdLines (KTNode ln pt Vertical rn) ((xmin, xmax), (ymin, ymax)) =
(\(_, y) -> [(p2 (xmin, y), p2 (xmax, y))])
(unp2 pt)
++ kdLines ln ((xmin, xmax), (ymin, y'))
++ kdLines rn ((xmin, xmax), (y', ymax))
where
(_, y') = unp2 pt
kdLines _ _ = []
f _ _ = mempty
-- |Draw the range rectangle and highlight the points inside that range.
kdRange :: Diag
kdRange = Diag f
where
f p [vt] =
(uncurry rectByDiagonal # lc red) (rangeSquare p)
<> drawP ptsInRange (dotSize p) # fc red # lc red
where
ptsInRange = fst . rangeSearch (kdTree vt Vertical) $ rangeSquare p
f _ _ = mempty
-- |The kd-tree visualized as binary tree.
kdTreeDiag :: Diag
kdTreeDiag = Diag f
where
f p [vt] =
-- HACK: in order to give specific nodes a specific color
renderTree (\n -> case n of
'*':'*':_ -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc green
'*':_ -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc red
_ -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc white)
(~~)
(symmLayout' (with & slHSep .~ 60 & slVSep .~ 40) roseTree)
# scale 2 # alignT # bg white
where
roseTree = snd
. rangeSearch (kdTree vt Vertical)
$ rangeSquare p
f _ _ = mempty
-- |Get the quad tree corresponding to the given points and diagram properties.
qt :: [PT] -> DiagProp -> QuadTree PT
qt vt p = quadTree vt (xDimension p, yDimension p)
-- |Create a diagram that shows a single square of the RangeSearch algorithm
-- from the quad tree in red, according to the given path in quadPath.
quadPathSquare :: Diag
quadPathSquare = Diag f
where
f p [vt] =
(uncurry rectByDiagonal # lw thin # lc red)
(getSquare (stringToQuads (quadPath p)) (qt vt p, []))
where
getSquare :: [Either Quad Orient] -> QTZipper PT -> Square
getSquare [] z = getSquareByZipper (xDimension p, yDimension p) z
getSquare (q:qs) z = case q of
Right x -> getSquare qs (fromMaybe z (findNeighbor x z))
Left x -> getSquare qs (fromMaybe z (goQuad x z))
f _ _ = mempty
-- |Create a list of diagrams that show the walk along the given path
-- through the quad tree.
gifQuadPath :: Diag
gifQuadPath = GifDiag f
where
f p col _ vt =
(uncurry rectByDiagonal # lw thick # lc col)
<$> getSquares (stringToQuads (quadPath p)) (qt vt p, [])
where
getSquares :: [Either Quad Orient] -> QTZipper PT -> [Square]
getSquares [] z = [getSquareByZipper (xDimension p, yDimension p) z]
getSquares (q:qs) z = case q of
Right x -> getSquareByZipper (xDimension p, yDimension p) z :
getSquares qs (fromMaybe z (findNeighbor x z))
Left x -> getSquareByZipper (xDimension p, yDimension p) z :
getSquares qs (fromMaybe z (goQuad x z))
-- |A diagram that shows the full Quad Tree with nodes.
treePretty :: Diag
treePretty = Diag f
where
f p [vt] =
prettyRoseTree (quadTreeToRoseTree
. flip getCurQT (qt vt p, [])
. stringToQuads
. quadPath
$ p)
where
getCurQT :: [Either Quad Orient] -> QTZipper PT -> QTZipper PT
getCurQT [] z = z
getCurQT (q:qs) z = case q of
Right x -> getCurQT qs (fromMaybe z (findNeighbor x z))
Left x -> getCurQT qs (fromMaybe z (goQuad x z))
prettyRoseTree :: Tree String -> Diagram Cairo R2
prettyRoseTree tree =
-- HACK: in order to give specific nodes a specific color
renderTree (\n -> case head n of
'*' -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc red
_ -> (text n # fontSizeL 5.0)
<> rect 50.0 20.0 # fc white)
(~~)
(symmLayout' (with & slHSep .~ 60 & slVSep .~ 40) tree)
# scale 2 # alignT # bg white
f _ _ = mempty